计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220400128-8.doi: 10.11896/jsjkx.220400128
刘弘毅1,2, 王瑞3, 吴贯锋1,2, 张阳1,2
LIU Hongyi1,2, WANG Rui3, WU Guanfeng1,2, ZHANG Yang1,2
摘要: 柴油发动机作为工业生产上的重要动力源之一,若其产生故障,将对工业生产的效率和安全造成巨大的影响,因此对柴油机进行故障诊断具有重要意义。针对柴油发动机气门故障诊断中特征提取困难和准确率不高的问题,提出一种基于核鲁棒流形非负矩阵分解方法和融合特征的柴油机故障诊断方法。首先,对压力信号进行时域分析,提取压力特征;其次使用短时傅里叶变换对振动信号进行时频分析;然后用核鲁棒流形非负矩阵分解提取振动信号中的特征;再融合压力信号中的特征与振动信号中的特征;最后使用支持向量机实现故障诊断。与传统方法相比,该方法在采集的数据集上故障诊断准确率可达100%,证明该方法可以有效提取特征并显著提高诊断准确率。
中图分类号:
[1]LV S G,YANG L,YANG Q.Research on the applications of infrared technique in the diagnosis and prediction of diesel engine exhaust fault[J].Journal of Thermal Science,2011,20(2):189-194. [2]YANG T T.Investigation into the condition monitoring of in-cylinder combustion behaviours of diesel engines based on time-frequency analysis of vibration signals[D].Taiyuan:Taiyuan University of Technology,2019. [3]YUE Y J,WANG X,CAI Y P,et al.A novel fault feature ex-traction scheme for diesel engine valves based on feature reduction of time-frequency images[J].Automotive Engineering,2018,40(1):114-120,126. [4]LEE D D,SEUNG H S.Learning the parts of obj-ects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791. [5]WANG X,YUE Y J,CAI Y P.Fast sparse dec-omposition andtwo-dimensional feature encoding recognition method of diesel engine vibration signal[J].Journal of Vibration,Measurement &Diagnosis,2019,39(1):114-122,225. [6]CAI Y P,FAN Y,CHEN W,et al.Application of improvedtime-frequency analysis and feature fusion in fault diagnosis of IC engines[J].China Mechanical Engineering,2020,31(16):1901-1911. [7]WANG H Q,WANG M Y,SONG L Y,et al.Method of compound fault signal separation using double constraints non-negative factorization[J].Journal of Vibration Engineering,2020,33(3):590-596. [8]MA C P,LIANG L,CHEN Y M,et al.Feature ext-raction for fault diagnosis of machine based on kernel nonnegative matrix factorization[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(IT-NEC).IEEE,2020:1412-1416. [9]ZHANG D,ZHOU Z H,CHEN S.Non-negative matrix factorization on kernels[C]//Pacific Rim International Conference on Artificial Intelligence.Berlin:Springer,2006:404-412. [10]KONG D,DING C,HUANG H.Robust nonnegative matrix factorization using l21-norm[C]//Proceedings of the 20th ACM International Conference on Information and KnowledgeMana-gement.2011:673-682. [11]DING C,ZHOU D,HE X F,et al.R1-pca:rotational invariant l1-norm principal component analysis for robust subspace facto-rization[C]//Proceedings of the 23rd International Conference on Machine Learning.2006:281-288. [12]CAI D,HE X F,HAN J W,et al.Graph regular-ized nonnegative matrix factorization for data represen-tation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(8):1548-1560. [13]WANG Y S,SUN T S,DING M T,et al.Actuator dynamicprocess fault detection using kernel robust non-negative matrix factorization[J/OL].Control Theory & Applications:1-9.http://kns.cnki.n-et/kcms/detail/44.1240.TP.20211117.1453.026.html. [14]ZHU X J.Fault diagnosis of beards compound fault based on sparse no-negative matrix factorization[J].Chinese Journal of Construction Machinery,2018,16(6):553-558. |
|