计算机科学 ›› 2023, Vol. 50 ›› Issue (11): 201-209.doi: 10.11896/jsjkx.221100217
林学渊, 鄂海红, 宋文宇, 罗浩然, 宋美娜
LIN Xueyuan, E Haihong , SONG Wenyu, LUO Haoran, SONG Meina
摘要: 知识图谱补全任务通过预测知识图谱中缺失的事实补全知识图谱。基于量子的知识图谱嵌入(KGE)模型利用变分量子电路,通过测量量子比特状态的概率分布对三元组进行评分,评分高的三元组即为缺失的事实。但是目前基于量子的KGE要么在优化过程中失去了量子优势,矩阵酉性被破坏,要么需要大量参数用于存储量子态,从而导致过拟合和低性能。此外,这些方法忽略了对于理解模型性能必不可少的理论分析。为了解决性能问题和弥合理论差距,提出了QubitE模型:将实体嵌入作为量子位(单位复向量),将关系嵌入作为量子门(酉复矩阵),评分过程为复矩阵乘法,利用核方法进行优化。该模型的参数化方式能在优化中保持量子优势,时空复杂度为线性,甚至可以进一步实现基于语义的量子逻辑计算。此外,从理论上可以证明该模型具有完全表达性、关系模式推理能力和包含性等,有助于理解模型性能。实验表明,QubitE在一些基准知识图谱上可以取得与最先进的经典模型相当的结果。
中图分类号:
[1]MA Y P,TRESP V,ZHAO L M,et al.Variational QuantumCircuit Model for Knowledge Graph Embedding[J].Advanced Quantum Technologies,2019,2(7/8):1-13. [2]BORDES A,USUNIER N,GARCIA-DURAN A et al.Translating Embeddings for Modeling Multi-Relational Data [C]//NIPS.2013. [3]LIN Y K,LIU Z Y,SUN M S,et al.Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]//AAAI.2015. [4]SUN Z Q,DENG Z H,NIE J Y,et al.RotatE:Knowledge Graph Embedding by Relational Rotation in Complex Space [C]//International Conference on Learning Representations.2019. [5]ZHANG S,TAY Y,YAO L N,et al.Quaternion KnowledgeGraph Embeddings [J].arXiv:1904.10281,2019. [6]NAYYERI M,VAHDATI S, AYKUL C,et al.5* Knowledge Graph Embeddings with Projective Transformations [J].arXiv:2006.04986,2020. [7]IVANA B,ALLEN C,TIMOTHY M.Multi-Relational Poincaré Graph Embeddings[C]//Advances in Neural Information Processing Systems 32:Annual Conference on Neural Information Processing Systems 2019.Vancouver,BC,Canada:NeurIPS 2019,2019:4465-4475. [8]INES C,WOLF A,DA-CHENG JUAN D C,et al.Low-Dimensional Hyperbolic Knowledge Graph Embeddings [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.online:ACL 2020,2020:6901-6914. [9]YANG B S,YIH W T,HE X D,et al.Embedding Entities and Relations for Learning and Inference in Knowledge Bases [C]//3rd International Conference on Learning Representations,ICLR 2015.San Diego:Conference Track Proceedings,2015. [10]THÉO T,WELBL J,RIEDEL S,et al.Complex Embeddings for Simple Link Prediction [C]//Proceedings of the 33nd International Conference on Machine Learning,ICML 2016.New York:JMLR.org,2016:2071-2080. [11]KAZEMI S M, POOLE D.SimplE Embedding for Link Predic-tion in Knowledge Graphs[C]//Advances in Neural Information Processing Systems 31:Annual Conference on Neural Information Processing Systems 2018.Canada:NeurIPS 2018,2018:4289-4300. [12]IVANA B,CARL ALLEN C,TIMOTHY M.HypernetworkKnowledge Graph Embeddings [C]//Artificial Neural Networks and Machine Learning--ICANN 2019--28th International Conference on Artificial Neural Networks.Germany:Springer,2019:553-565. [13]IVANA B,CARL ALLEN C,TIMOTHY M.TuckER:Tensor Factorization for Knowledge Graph Completion [C]//Procee-dings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Hong Kong:EMNLP-IJCNLP,2019:5184-5193. [14]SETH L,SCHULD M,IJAZ A,et al.Quantum Embeddings for Machine Learning[J].arXiv:2001.03622,2020. [15]GLOROT X,BENGIO Y.Understanding the Difficulty of Trai-ning Deep Feedforward Neural Networks [C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.JMLR Workshop,2010:249-256. [16]WANG Y J,GEMULLA R,LI H.On Multi-Relational LinkPrediction with Bilinear Models [C]//AAAI.2018. [17]BOLLACKER K D,EVANS C,PARITOSH P,et al.Freebase:A Collaboratively Created Graph Database for Structuring Human Knowledge [C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.New York:SIGMOD 2008:1247-1250. [18]TOUTANOVA K,CHEN D Q.Observed Versus Latent Features for Knowledge Base and Text Inference[C]//The 3rd Workshop on Continuous Vector Space Models and their Compositionality.2015. [19]MILLER G A.WordNet:A Lexical Database for English [J].Communications of the ACM,1992,38(1):39-41. [20]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d Knowledge Graph Embeddings [C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,(AAAI-18),the 30th Innovative Applications of Artificial Intelligence(IAAI-18),and the 8th AAAI Symposium on Educa-tional Advances in Artificial Intelligence(EAAI-18).New Or-leans,Louisiana,USA,AAAI Press,2018:1811-1818. [21]ADAM P,GROSS S,CHINTALA S,et al.Automatic Differentiation in PyTorch [C]//NIPS.2017. |
|