计算机科学 ›› 2024, Vol. 51 ›› Issue (3): 244-250.doi: 10.11896/jsjkx.221200003
冯忍, 陈云华, 熊志民, 陈平华
FENG Ren, CHEN Yunhua, XIONG Zhimin, CHEN Pinghua
摘要: 由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN) 的训练一直是一个难题。基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲信息编码机制的影响。在众多编码机制中,首脉冲时间编码(TTFS)具有良好的生物学基础和更高的能效,但现有TTFS编码采用单脉冲形式,信息表征能力较弱,编码所需时间窗较大。为此,在TTFS的单脉冲编码基础上,增加一个校准脉冲,形成一种自校准首脉冲时间(SC-TTFS)编码机制,并构建相应的SC-TTFS神经元模型。在SC-TTFS中,首脉冲为必定发放的脉冲,而校准脉冲根据首脉冲发放后剩余的膜电位来确定是否发放,用于对编码脉冲所引起的转换量化误差和截断误差进行补偿,同时缩小编码所需的时间窗。通过对多种编码对应的转换误差进行对比分析,以及在多种网络结构上进行ANN-SNN转换实验,验证了所提方法的优越性。采用CIFAR10和CIFAR100数据集,基于VGG和ResNet两种网络结构进行了实验验证。结果表明,所提方法在两类网络结构和两种数据集上均实现了精度无损的ANN-SNN转换,且相较于最先进的同类方法,所提方法所构建的SNN具有最短的网络推理延迟。另外,在VGG结构上,所提方法相比TTFS编码能源效率提升了约80%。
中图分类号:
[1]ZHANG T L,XU B.Research Status and Prospect of PulseNeural Network [J].Journal of Computer Science,2021,44(9):1767-1785. [2]BOHTE S M,KOK J N,LA POUTRÉ J A.Spikeprop: backpropagation for networks of spiking neurons[C]//ESANN.Bruges,2000:419-424. [3]NEFTCI E O,MOSTAFA H,ZENKE F.Surrogate Gradient Learning in Spiking Neural Networks:Bringing the Power of Gradient-based optimization to spiking neural networks[J].IEEE Signal Processing Magazine,2019,36(6):51-63. [4]LEE J H,DELBRUCK T,PFEIFFER M.Training deep spiking neural networks using backpropagation[J].Frontiers in Neuroscience,2016,10:508. [5]MIRSADEGHI M,SHALCHIAN M,KHERADPISHEH S R,et al.Spike time displacement based error backpropagation in convolutional spiking neural networks[J].arXiv:2108.13621,2021. [6]TAVANAEI A,MAIDA A S.Multi-layer unsupervised learningin a spiking convolutional neural network[C]//2017 International Joint Conference on Neural Networks(IJCNN).IEEE,2017:2023-2030. [7]TAVANAEI A,MAIDA A.BP-STDP:Approximating back-propagation using spike timing dependent plasticity[J].Neurocomputing,2019,330:39-47. [8]CAO Y,CHEN Y,KHOSLA D.Spiking deep convolutional neural networks for energy-efficient object recognition[J].International Journal of Computer Vision,2015,113(1):54-66. [9]RUECKAUER B,LUNGU I A,HU Y,et al.Conversion of continuous-valued deep networks to efficient event-driven networks for image classification[J].Frontiers in Neuroscience,2017,11:682. [10]HAN B,SRINIVASAN G,ROY K.Rmp-snn:Residual mem-brane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13558-13567. [11]MUELLER E,HANSJAKOB J,AUGE D,et al.Minimizing Inference Time:Optimization Methods for Converted Deep Spiking Neural Networks[C]//2021 International Joint Conference on Neural Networks(IJCNN).IEEE,2021. [12]LI Y,DENG S,DONG X,et al.A free lunch from ANN:Towards efficient,accurate spiking neural networks calibration[C]//International Conference on Machine Learning.PMLR,2021:6316-6325. [13]KIM J,KIM H,HUH S,et al.Deep neural networks withweighted spikes[J].Neurocomputing,2018,311:373-386. [14]LI Y,ZENG Y,ZHAO D.Bsnn:Towards faster and better conversion of artificial neural networks to spiking neural networks with bistable neurons[J].arXiv:2105.12917,2021. [15]RUECKAUER B,LIU S C.Temporal pattern coding in deep spiking neural networks[C]//2021 International Joint Con-ference on Neural Networks(IJCNN).IEEE,2021. [16]PARK S,KIM S,CHOE H,et al.Fast and efficient information transmission with burst spikes in deep spiking neural networks[C]//2019 56th ACM/IEEE Design Automation Conference(DAC).IEEE,2019. [17]GUO W,FOUDA M E,ELTAWIL A M,et al.Neural coding in spiking neural networks:A comparative study for robust neuromorphic systems[J].Frontiers in Neuroscience,2021,15:638474. [18]RUECKAUER B,LIU S C.Conversion of analog to spiking neural networks using sparse temporal coding[C]//2018 IEEE International Symposium on Circuits and Systems(ISCAS).IEEE,2018. [19]HAN B,ROY K.Deep spiking neural network:Energy efficien-cy through time based coding[C]//European Conference on Computer Vision.Cham:Springer,2020:388-404. [20]ZHANG L,ZHOU S,ZHI T,et al.Tdsnn:From deep neural networks to deep spike neural networks with temporal-coding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:1319-1326. [21]PARK S,KIM S,NA B,et al.T2FSNN:Deep spiking neural networks with time-to-first-spike coding[C]//2020 57th ACM/IEEE Design Automation Conference(DAC).IEEE,2020. [22]TOVEE M J,ROLLS E T.Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex[J].Visual cognition,1995,2(1):35-58. [23]KUMAR S,KAPOSVARI P,VOGELS R.Encoding of predictable and unpredictable stimuli by inferior temporal cortical neurons[J].Journal of Cognitive Neuroscience,2017,29(8):1445-1454. [24]STÖCKL C,MAASS W.Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes[J].Nature Machine Intelligence,2021,3(3):230-238. [25]DAVIDSON S,FURBER S B.Comparison of artificial and spiking neural networks on digital hardware[J].Frontiers in Neuroscience,2021,15:651141. [26]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [27]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J/OL].https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0D60E5DD558A91470E0EA1725FF36E0A?doi=10.1.1.222.9220&rep=rep1&type=pdf. [29]SENGUPTA A,YE Y,WANG R,et al.Going deeper in spiking neural networks:VGG and residual architectures[J].Frontiers in Neuroscience,2019,13:95. [30]RATHI N,ROY K.DIET-SNN:A low-latency spiking neural network with direct input encoding and leakage and threshold optimization[J].IEEE Transactions on Neural Networks and Learning Systems,2021,34(6):3174-3182. [31]MEROLLA P A,ARTHUR J V,ALVAREZ-ICAZA R,et al.A million spiking-neuron integrated circuit with a scalable communication network and interface[J].Science,2014,345(6197):668-673. [32]FURBER S B,GALLUPPI F,TEMPLE S,et al.The spinnaker project[J].Proceedings of the IEEE,2014,102(5):652-665. [33]MORADI S,MANOHAR R.The impact of on-chip communication on memory technologies for neuromorphic systems[J].Journal of Physics D:Applied Physics,2018,52(1):014003. |
|