计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 231-238.doi: 10.11896/jsjkx.230300154
李泽锴, 柏正尧, 肖霄, 张奕涵, 尤逸琳
LI Zekai, BAI Zhengyao, XIAO Xiao, ZHANG Yihan, YOU Yilin
摘要: 借鉴Transformer在自然语言和计算机视觉领域强大的特征编码能力,同时受多阶段学习框架的启发,设计了一种融合Transformer与多阶段学习框架的点云上采样网络——MSPUiT。该网络采用二阶段网络模型,第一阶段是密集点生成网络,利用多层Transformer编码器逐步实现从输入点云的局部几何信息、局部特征信息到点云高级语义特征的转换,特征扩充模块在特征空间中,对点云特征上采样,坐标回归模块将点云从特征空间重新映射回欧氏空间中初步生成密集点云M′;第二阶段是逐点优化网络,使用Transformer编码器对密集点云M′中潜藏的语义特征进行编码,联合上一阶段语义特征得到点云完整的语义特征,特征精炼单元从M′的几何信息和语义特征中提取点的误差信息特征,误差回归模块从误差信息特征中计算得到欧氏空间中点的坐标偏移量,实现对点云M′的逐点优化,使得点云上点的分布更加均匀,并且更加贴近真实物体表面。在大型合成数据集PU1K上进行了大量实验,MSPUiT生成的高分辨率点云在倒角距离(CD)、豪斯多夫距离(HD)、生成点云到原始点云块的距离(P2F)上的指标分别降至0.501×10-3,5.958×10-3,1.756×10-3。实验结果表明,MSPUiT上采样后的点云表面更加光滑,噪声点更少,生成的点云质量高于当前主流的点云上采样网络。
中图分类号:
[1]CHE A B,ZHANG H,LI C,et al.Single-stage 3D Object Detector in Traffic Environment Based on Point Cloud Data[J].Computer Science,2022,49(S2):567-572. [2]ZHAO X C,CHANG H X,JIN R B.3D Point Cloud Shape Completion GAN[J].Computer Science,2021,48(4):192-196. [3]QI S H,XU H G,WAN Y W,et al.Construction of Semantic Mapping in Dynamic Environments[J].Computer Science,2020,47(9):198-203. [4]FOIX S,ALENYA G,TORRAS C.Lock-in Time-of-Flight(ToF) cameras:a survey[J].IEEE Sensors Journal,2011,11(9):1917-1926. [5]SCHUON S,THEOBALT C,DAVIS J,et al.High-quality scanning using time-of-flight depth superresolution[C]//Procee-dings of 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2008:1-7. [6]RICHARDSON J,WALKER R,GRANT L,et al.A 32×3250 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging[C]//Proceedings of 2009 IEEE Custom Integrated Circuits Conference.Washington D.C,USA:IEEE Press,2009:77-80. [7]ALEXA M,BEHR J,COHEN-OR D,et al.Computing and rendering point set surfaces[J].IEEE Transactions on Visualization and Computer Graphics,2003,9(1):3-15. [8]LIPMAN Y,COHEN-OR D,LEVIN D,et al.Parameterization-free projection for geometry reconstruction[J].ACM Transactions on Graphics,2007,26(3):22:1-5. [9]HUANG H,LI D,ZHANG H,et al.Consolidation of unorga-nized point clouds for surface reconstruction[J].ACM Transactions on Graphics,2009,28(5):176:1-8. [10]HUANG H,WU S,GONG M,et al.Edge-aware point set resam-pling[J].ACM Transactions on Graphics,2013,32(1):9:1-9:12. [11]WU S H,HUANG H,GONG M L,et al.Deep points consolidation[J].ACM Transactions on Graphics,2015,34(6) 176:1-176:7. [12]LI R H,LI X Z,HENG P A,et al.Point Cloud Upsampling via Disentangled Refinement[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2021:344-353. [13]YU L Q,LI X Z,FU C W,et al.PU-Net:Point Cloud Upsampling Network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:2790-2799. [14]WANG Y F,WU S H,HUANG H,et al.Patch-based Progressive 3D Point Set Upsampling[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:5951-5960. [15]LI R H,LI X Z,FU C W,et al.PU-GAN:a Point Cloud Upsampling Adversarial Network[C]//Proceeding of IEEE International Conference on Computer Vision.2019:7203-7212. [16]QIAN G C,ABDULELLAH A,LI G H.PU-GCN:Point Cloud Upsampling using Graph Convolutional Networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.2021:11683-11692. [17]HAN B,ZHANG X,REN S.PU-GACNet:Graph AttentionConvolution Network for Point Cloud Upsampling[J].Image and Vision Computing,2022,118:104371. [18]GU F,ZHANG C L,WANG H Y,et al.PU-WGCN:PointCloud Upsampling Using Weighted Graph Convolutional Networks[J].Remote Sensing,2022,14(21):5356. [19]LIU Y L,WANG Y M,LIU Y.Refine-PU:A Graph Convolutional Point Cloud Upsampling Network using Spatial Refinement[C]//Proceeding of the 2022 IEEE International Confe-rence on Visual Communications and Image Processing(VCIP).2022:1-5. [20]ASHISH V,NOAM S,NIKI P,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing.2017:6000-6010. [21]YANG F Z,YANG H,FU J L,et al.Learning texture transformer network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:5791-5800. [22]ALEXEY D,LUCAS B,ALEXANDER K,et al.An image isworth 16x16 words:Transformers for image recognition at scale[EB/OL].https://arxiv.org/abs/2010.11929. [23]NICOLAS C,FRANCISCO M,SYNNAEV G,et al.End-to-end object detection with transformers[C]//European Conference on Computer Vision.2020:213-229. [24]YAN X,ZHENG C D,LI Z,et al.PointASNL:Robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:5588-5597. [25]AMIR H,RANA H,RAJA G,et al.PointGMM:A neural GMMnetwork for point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12051-12060. [26]LU D N,XIE Q,WEI M Q.Transformers in 3d point clouds:A survey[EB/OL].https://arxiv.org/abs/2205.07417. [27]GUO M H,CAI J X,LIU Z N,et al.Pct:Point cloud transfor-mer[J].Computational Visual Media,2021,7(2):187-199. [28]YU X M,TANG L L,RAO Y M,et al.Point-BERT:Pre-trai-ning 3D Point Cloud Transformers with Masked Point Modeling[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2022:19291-19300. [29]ZHAO H S,JIANG L,JIA J,et al.Point Transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:16239-16248. [30]HUI L,YANG H,CHENG M M,et al.Pyramid Point CloudTransformer for Large-Scale Place Recognition[C]//Procee-dings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:6078-6087. [31]WANG Y,SUN Y B,LIU Z W,et al.Dynamic Graph CNN for Learning on Point Clouds[EB/OL].https://arxiv.org/abs/1801.07829. [32]THOMAS H,QI C R,DESCHAUD J E,et al.KPConv:Flexible and Deformable Convolution for Point Clouds[EB/OL].https://arxiv.org/abs/1904.08889. [33]CHANG A X,FUNKHOUSER T,GUIBAS L,et al.ShapeNet:An Information-Rich 3D Model Repository[EB/OL].https://arxiv.org/abs/1512.03012. |
|