计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400041-6.doi: 10.11896/jsjkx.230400041
孙继飞, 贾克斌
SUN Jifei, JIA Kebin
摘要: 地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据。然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用。特别是当云图中出现多类云状时,现有技术难以按不同云类分别划分区域并进行云量计算。为了解决这一问题,提出用基于深度学习的语义分割方法实现对地基云图的按类分割。首先,构建了地基云图语义分割数据集GBCSS,该数据集包含3000幅云图,共计11个类别。在此基础上,提出了一种基于U型神经网络的改进方案UNet-PPM作为地基云图语义分割模型。为了增强网络对云的轮廓特征提取能力,引入了金字塔池化模块。该模块提取并聚合了不同尺度的图像特征,提升了网络获取全局信息的能力。最后,将设计的网络在GBCSS上进行了训练以及评估,其在测试集上达到了91.5%的像素准确率。与U-Net相比,UNet-PPM在像素准确率上有5.4%的提升,表明该网络对云的轮廓特征提取的能力更强,以及语义分割应用在地基云图中的可行性。
中图分类号:
[1]ZHAO C,CHEN Y,LI J,et al.Fifteen-year statistical analysisof cloud characteristics over China using Terra and Aqua Modera-te Resolution Imaging Spectroradiometer observations[J].International Journal of Climatology,2019,39(5):2612-2629. [2]ZHU B,YANG J,LV W T,et al.Ground-based visible cloudimage classification method based on KNN algorithm[J].Journal of Applied Meteorological Science,2012,23(6):721-728. [3]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [4]ZHU W,CHEN T,HOU B,et al.Classification of ground-based cloud images by improved combined convolutional network[J].Applied Sciences,2022,12(3):1570. [5]SAITO M,IWABUCHI H.Cloud discrimination from sky images using a clear-sky index[J].Journal of Atmospheric and Oceanic Technology,2016,33(8):1583-1595. [6]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [7]ZHANG X,JIA K B,LIU J,et al.Segmentation Technology of Ground-Based Cloud Image for Lightweight[J].Measurement & Control Technology,2022,41(9):37-43. [8]YE L,CAO Z,XIAO Y,et al.Supervised fine-grained cloud detection and recognition in whole-sky images[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(10):7972-7985. [9]BANKERT R L.Cloud classification of AVHRR imagery inmaritime regions using a probabilistic neural network[J].Journal of Applied Meteorology and climatology,1994,33(8):909-918. [10]DEV S,LEE Y H,WINKLER S.Multi-level semantic labeling of sky/cloud images[C]//2015 IEEE International Conference on Image Processing(ICIP).IEEE,2015:636-640. [11]DEV S,LEE Y H,WINKLER S.Categorization of cloud image patches using an improved texton-based approach[C]//2015 IEEE International Conference on Image Processing(ICIP).IEEE,2015:422-426. [12]DEV S,LEE Y H,WINKLER S.Color-based segmentation of sky/cloud images from ground-based cameras[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,10(1):231-242. [13]COHN S A.A new edition of the international cloud atlas[J].WMO Bulletin,Geneva,World Meteorological Organization,2017,66:2-7. [14]ZHANG J,LIU P,ZHANG F,et al.CloudNet:Ground-basedcloud classification with deep convolutional neural network[J].Geophysical Research Letters,2018,45(16):8665-8672. [15]ZHUO W,CAO Z,XIAO Y.Cloud classification of ground-based images using texture-structure features[J].Journal of Atmospheric and Oceanic Technology,2014,31(1):79-92. [16]XIE W,LIU D,YANG M,et al.SegCloud:A novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation[J].Atmospheric Measurement Techniques,2020,13(4):1953-1961. [17]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany.Springer International Publishing,2015:234-241. [18]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [19]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [20]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154. [21]YU C,GAO C,WANG J,et al.Bisenet v2:Bilateral networkwith guided aggregation for real-time semantic segmentation[J].International Journal of Computer Vision,2021,129:3051-3068. [22]GONG C,WANG D,LI M,et al.Keepaugment:A simple information-preserving data augmentation approach[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:1055-1064. [23]LIU J W,LIU Y,LUO X L.Semi-Supervised Learning Methods[J].Chinese Journal of Computers,2015,38(8):1592-1617. [24]CHEN M,DU Y,ZHANG Y,et al.Semi-supervised learningwith multi-head co-training[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:6278-6286. [25]HEO B,KIM J,YUN S,et al.A comprehensive overhaul of fea-ture distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1921-1930. [26]LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2736-2744. |
|