计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400081-8.doi: 10.11896/jsjkx.230400081

• 图像处理&多媒体技术 • 上一篇    下一篇

基于统计分析的仿射运动估计快速算法

钟煜城1, 黄晓峰1, 牛伟宏1, 崔燕2   

  1. 1 杭州电子科技大学通信工程学院 杭州 310018
    2 浙江省经济信息中心 杭州 310007
  • 发布日期:2024-06-06
  • 通讯作者: 崔燕(cuiyan_9816@126.com)
  • 作者简介:(yuchengzhong327@163.com)
  • 基金资助:
    国家电网有限公司总部管理科技项目(5700-202325308A-1-1-ZN)

Fast Algorithm for Affine Motion Estimation Based on Statistical Analysis

ZHONG Yucheng1, HUANG Xiaofeng1, NIU Weihong1, CUI Yan2   

  1. 1 School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China
    2 Zhejiang Economic Information Center,Hangzhou 310007,China
  • Published:2024-06-06
  • About author:ZHONG Yucheng,born in 2002,undergraduate.His main research interests include video processing and compression technology.
    CUI Yan,born in 1988,postgraduate.Her main research interests include image video coding and VLSI design.
  • Supported by:
    Technology Project Managed by State Grid Corporation of China Headquarter(5700-202325308A-1-1-ZN) .

摘要: 为降低新一代通用视频编码标准(Versatile Video Coding,VVC)的计算复杂度,提出了一种基于统计分析的仿射运动估计(Affine Motion Estimation,AME)快速算法。从加速AME过程的角度出发,首先摒弃AME的3种运动矢量(Motion Vector,MV)精度中的整像素和1/16像素精度,保留1/4像素精度;其次利用迭代次数与量化参数(Quantization Parameter,QP)、slice类型以及编码单元(Coding Unit,CU)大小的关系,得到一个迭代次数的自适应计算式来减少AME迭代次数;然后将细粒度搜索(Fine Granularity Search,FGS)算法中CU 4个角落的4个整像素用2个对角分像素进行替代;最后运用绝对变换差和(Sum of Absolute Transform Difference,SATD)代价来替代率失真(Rate Distortion Optimization,RDO)代价。实验结果表明,与H.266/VVC参考软件VTM-10.0相比,提出的算法在低延迟(Low Delay B,LDB)和随机访问(Random Access,RA)配置下分别节省了8.34%和8.83%的时间,与此同时性能损失仅为0.10%和0.12%。

关键词: 通用视频编码, 仿射运动估计, 像素精度, 细粒度搜索, 绝对变换差和

Abstract: To reduce the computational complexity of the new generation video coding standard-versatile video coding(VVC),a fast affine motion estimation(AME) calculation method based on statistical analysis is proposed.In the proposed method,we first abandon the integer pixel and 1/16-pixel accuracy,while retaining 1/4-pixel accuracy of the three motion vector(MV) accuracies.Secondly,we build the relationship between the iterations and quantization parameters(QP),slice type,and coding unit(CU) size to obtain an adaptive formula for reducing the number of iterations in AME.Then,the four integer pixels in the four corners of CU in the fine granularity search(FGS) algorithm are replaced by two diagonal sub pixels.Finally,the sum of absolute transform difference(SATD) cost is used to replace the rate distortion optimization(RDO) cost.Experimental results show that compared with the H.266/VVC reference software VTM-10.0,the proposed algorithm saves 8.34% and 8.83% of time in low delay B(LDB) and random access(RA) configurations,while the performance loss is only 0.10% and 0.12%,respectively.

Key words: Versatile video coding, Affine motion estimation, Pixel accuracy, Fine granularity search, Sum of absolute transform difference

中图分类号: 

  • TN919
[1]WIEGAND T,SULLIVAN G J,BJONTEGAARD G,et al.Overview of the H.264/AVC video coding standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2003,13(7):560-576.
[2]SULLIVAN G J,OHM J R,HAN W J,et al.Overview of the high efficiency video coding(HEVC) standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(12):1649-1668.
[3]WIECKOWSKI A,MA J,SCHWARZ H,et al.Fast partitioning decision strategies for the upcoming versatile video coding(VVC) standard[C]//2019 IEEE International Conference on Image Processing(ICIP).IEEE,2019:4130-4134.
[4]TUN E E,ARAMVITH S,ONOYE T.Low complexity modeselection for H.266/VVC intra coding[J].ICT Express,2022,8(1):83-90.
[5]HUANG Y W,AN J,HUANG H,et al.Block partitioningstructure in the VVC standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(10):3818-3833.
[6]PARK S H,KANG J W.Fast affine motion estimation for versatile video coding(VVC) encoding[J].IEEE Access,2019,7:158075-158084.
[7]CHOWDARY T A,NALLURI P.Multiple Transform Selection in Versatile Video Coding:a Review[C]//2022 8th International Conference on Advanced Computing and Communication Systems(ICACCS).IEEE,2022,1:991-996.
[8]BROSS B,WANG Y K,YE Y,et al.Overview of the versatile video coding(VVC) standard and its applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(10):3736-3764.
[9]HOANGVAN X,NGUYENQUANG S,DINHBAOM,et al.Fast QTMT for H.266/VVC intra prediction using early-terminated hierarchical CNN model[C]//2021 International Conference on Advanced Technologies for Communications(ATC).IEEE,2021:195-200.
[10]WANG K,LIANG H,ZHANG S,et al.Fast CU PartitionMethod Based on Extra Trees for VVC Intra Coding[C]//2022 IEEE International Conference on Visual Communications and Image Processing(VCIP).IEEE,2022:1-5.
[11]WANG Z,WANG J,YANG J,et al.A Fast Transform Algorithm for VVC Intra Coding[C]//2022 11th International Conference on Communications,Circuits and Systems(ICCCAS).IEEE,2022:237-240.
[12]ZHANG Z,FU C H,XIE K,et al.Fast VVC Intra Coding bySkipping Redundant Coding Block Structures and Unnecessary Directional Partition[C]//2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval(MIPR).IEEE,2022:84-89.
[13]LIU C,SUN H,KATTO J,et al.QA-filter:A QP-adaptive convolutional neural network filter for video coding[J].IEEE Transactions on Image Processing,2022,31:3032-3045.
[14]PARK S H,KANG J W.Fast affine motion estimation for versatile video coding(VVC) encoding[J].IEEE Access,2019,7:158075-158084.
[15]GUAN X,SUN X.VVC Fast ME Algorithm Based on Spatial Texture Features and Time Correlation[C]//2021 International Conference on Digital Society and Intelligent Systems(DSInS).IEEE,2021:371-377.
[16]JUNG S,JUN D.Context-based inter mode decision method for fast affine prediction in versatile video coding[J].Electronics,2021,10(11):1243.
[17]DUARTE A,GONÇALVES P,AGOSTINI L,et al.Fast affine motion estimation for vvc using machine-learning-based early search termination[C]//2022 IEEE International Symposium on Circuits and Systems(ISCAS).IEEE,2022:1-5.
[18]ZHU S,MA K K.A new diamond search algorithm for fastblock-matching motion estimation[J].IEEE Transactions on Image Processing,2000,9(2):287-290.
[19]ZHU C,LIN X,CHAU L P.Hexagon-based search pattern for fast block motion estimation[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(5):349-355.
[20]TOURAPIS A M.Enhanced predictive zonal search for single and multiple frame motion estimation[C]//Visual Communications and Image Processing 2002.SPIE,2002,4671:1069-1079.
[21]PURNACHAND N,ALVES L N,NAVARRO A.Improve-ments to TZ search motion estimation algorithm for multiview video coding[C]//2012 19th International Conference on Systems,Signals and Image Processing(IWSSIP).IEEE,2012:388-391.
[22]ZHANG K,CHEN Y W,ZHANG L,et al.An improved framework of affine motion compensation in video coding[J].IEEE Transactions on Image Processing,2018,28(3):1456-1469.
[23]LI L,LI H,LIU D,et al.An efficient four-parameter affine motion model for video coding[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,28(8):1934-1948.
[24]CHEN J,YE Y,KIM S.Algorithm description for versatile video coding and test model 10(VTM 10) JVET-S2002[C]//19th Meeting of the Joint Video Exploration Team(JVET).2020:1-67.
[25]BOYCE J,SUEHRING K,LI X,et al.JVET-J1010:JVET common test conditions and software reference configurations[C]//10th Meeting of the Joint Video Experts Team.2018:JVET-J1010-v1.
[26]BJONTEGAARD G.Calculation of average PSNR differences between RD-curves(VCEG-M33)[Z].2001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!