计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 146-155.doi: 10.11896/jsjkx.230400147

• 数据库&大数据&数据科学 • 上一篇    下一篇

融入多影响力与偏好的图对比学习社交推荐算法

胡海波1, 杨丹1, 聂铁铮2, 寇月2   

  1. 1 辽宁科技大学计算机与软件工程学院 辽宁 鞍山 114051
    2 东北大学计算机科学与工程学院 沈阳 110169
  • 收稿日期:2023-04-21 修回日期:2023-08-29 出版日期:2024-07-15 发布日期:2024-07-10
  • 通讯作者: 杨丹(asyangdan@163.com)
  • 作者简介:(ashuhb@163.com)
  • 基金资助:
    国家自然科学基金(62072084,62072086);辽宁省教育厅科学研究项目(LJKMZ20220646)

Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation

HU Haibo1, YANG Dan1, NIE Tiezheng2, KOU Yue2   

  1. 1 School of Computer Science and Software Engineering,University of Science and Technology Liaoning,Anshan,Liaoning 114051,China
    2 School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China
  • Received:2023-04-21 Revised:2023-08-29 Online:2024-07-15 Published:2024-07-10
  • About author:HU Haibo,born in 2000,postgraduate,is a student member of CCF(No.O8310G).His main research interests include recommendation system and data integration.
    YANG Dan,born in 1978,Ph.D,professor,is a senior member of CCF(No.20240S).Her main research interests include recommendation system,data integration,and medical big data.
  • Supported by:
    National Natural Science Foundation of China(62072084,62072086) and General Scientific Research Project of Liaoning Provincial Department of Education(LJKMZ20220646).

摘要: 目前,基于图神经网络的社交推荐方法主要对社交信息和交互信息的显式关系和隐式关系进行联合建模,以缓解冷启动问题。尽管这些方法较好地聚合了社交关系和交互关系,但忽略了高阶隐式关系并非对每个用户都有相同的影响,并且监督学习的方法容易受到流行度偏差的影响。此外,这些方法主要聚焦用户和项目之间的协作关系,没有充分利用项目之间的相似关系。因此,文中提出了一种融入多影响力与偏好的图对比学习社交推荐算法(SocGCL)。一方面,引入节点间(用户和项目)融合机制和图间融合机制,并考虑了项目之间的相似关系。节点间融合机制区分图内不同节点对目标节点的不同影响;图间融合机制聚合多种图的节点嵌入表示。另一方面,通过添加随机噪声进行跨层图对比学习,有效缓解了社交推荐的冷启动问题和流行度偏差。在两个真实数据集上进行实验,结果表明,SocGCL优于其他基线方法,有效提高了社交推荐的性能。

关键词: 社交推荐, 注意力机制, 图对比学习, 图神经网络

Abstract: At present,social recommendation methods based on graph neural network mainly alleviate the cold start problem by jointly modeling the explicit and implicit relationships of social information and interactive information.Although these methods aggregate social relations and user-item interaction relations well,they ignore that the higher-order implicit relations do not have the same impacts on each user.And these supervised methods are susceptible to popularity bias.In addition,these methods mainly focus on the collaborative function between users and items,but do not make full use of the similarity relations between items.Therefore,this paper proposes a social recommendation algorithm (SocGCL) that incorporates multiple influences and prefe-rences into graph contrastive learning.On the one hand,a fusion mechanism for nodes(users and items) and a fusion mechanism for graphs are introduced,taking into account the similarity relations between items.The fusion mechanism for nodes distinguishes the different impacts of different nodes in the graph on the target node,while the fusion mechanism for graphs aggregates the node embedding representations of multiple graphs.On the other hand,by adding random noise for cross-layer graph contrastive learning,the cold start problem and popularity bias of social recommendation can be effectively alleviated.Experimental results on two real-world datasets show that SocGCL outperforms the baselines and effectively improves the performance of social recommendation.

Key words: Social Recommendation, Attention Mechanism, Graph Contrastive Learning, Graph Neural Networks

中图分类号: 

  • TP391
[1]PENG H L,ZHANG X J,JIN K Z.Social RecommendationsMethod Based on Differential Privacy[J].Computer Science,2017,44(S1):395-398.
[2]QIAN F L,LI Q L.Social Recommendation Combining Globaland Dual Local Information[J].Computer Science,2016,43(2):57-59.
[3]GUO G,ZHANG J,YORKE-SMITH N.A Novel Recommendation Model Regularized with User Trust and Item Ratings[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(7):1607-1620.
[4]GUO Z,WANG H.A Deep Graph Neural Network-BasedMechanism for Social Recommendations[J].IEEE Transactions on Industrial Informatics,2020,17(4):2776-2783.
[5]JIN B,CHENG K,ZHANG L,et al.Partial Relationship Aware Influence Diffusion via a Multi-channel Encoding Scheme for Social Recommendation[C]//The 29th ACM International Confe-rence on Information and Knowledge Management(CIKM'20).ACM,2020:585-594.
[6]LIU S H,WANG B,DENG X J,et al.Self-Attentive Graph Convolution Network with Latent Group Mining and Collaborative Filtering for Personalized Recommendation[C]//IEEE Transactions on Network Science and Engineering(TNSE).2021.
[7]YU J,YIN H,XIA X,et al.Are graph augmentations necessa-ry? simple graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1294-1303.
[8]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].IEEE,Computer Journal,Computer,2009,42(8):30-37.
[9]TONG Z,MCAULEY J,KING I.Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering[C]//The 23rd ACM International Conference.ACM,2014.
[10]JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//ACM Conference on Recommender Systems.ACM,2010.
[11]KOREN Y.Factorization meets the neighborhood:A multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on KnowledgeDisco-very and Data Mining.Las Vegas,Nevada,USA,2008.
[12]YANG B,LEI Y,LIU J,et al.Social Collaborative Filtering by Trust[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016:39(8):1633-1647.
[13]HAO M,ZHOU D,CHAO L,et al.Recommender systems with social regularization[C]//Proceedings of the Forth International Conference on Web Search and Web Data Mining(WSDM 2011).Hong Kong,China,DBLP,2011.
[14]FAN W Q,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//The World Wide Web Conference(WWW 2019).San Francisco,CA,USA,2019:417-426.
[15]SHA X,SUN Z,ZHANG J.Disentangling Multi-Facet SocialRelations for Recommendation[J].IEEE Transactions on Computational Social Systems,2021,9(3):867-878.
[16]FAN W,MA Y,LI Q,et al.A Graph Neural Network Framework for Social Recommendations[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(5):2033-2047.
[17]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:235-244.
[18]WU L,LI J,SUN P,et al.DiffNet++:A Neural Influence and Interest Diffusion Network for Social Recommendation[J].IEEE Trans.Knowl.Data Eng,2020,34(10):4753-4766.
[19]WU Q,ZHANG H,GAO X,et al.Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems[C]//The World Wide Web Conference.2019:2091-2102.
[20]YU J L, YIN H Z,GAO M,et al.Socially-aware self-supervisedtri-training for recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD),2021:2084-2092.
[21]DU J,YE Z S,YAO L N,et al.Socially-aware Dual Contrastive Learning for Cold-Start Recommendation[C]//Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR).2022:1927-1932.
[22]YU J L,YIN H Z,LI J D,et al.Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]//Proceedings of the ACM Web Conference (WWW).2021:413-424.
[23]WU J H,FAN WQ,CHEN J F,et al.Disentangled Contrastive Learning for Social Recommendation[C]//Proceedings of ACM International Conference on Information & Knowledge Management (CIKM).2022:4570-4574.
[24]HE X,DENG K,WANG X,et al.LightGCN:Simplifying andPowering Graph Convolution Network for Recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:649-648.
[25]LIAO J,ZHOU W,LUO F,et al.SocialLGN:Light graph convolution network for social recommendation[J].Information Sciences,2022,589(C):595-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!