计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400148-6.doi: 10.11896/jsjkx.230400148

• 大数据&数据科学 • 上一篇    下一篇

基于图自编码器和GRU网络的分层交通流预测模型

赵子琪, 杨斌, 张远广   

  1. 南华大学电气工程学院 湖南 衡阳 421001
  • 发布日期:2024-06-06
  • 通讯作者: 杨斌(yangbin01420@163.com)
  • 作者简介:(ztq9885@163.com)
  • 基金资助:
    国家自然科学基金(61871210)

Hierarchical Traffic Flow Prediction Model Based on Graph Autoencoder and GRU Network

ZHAO Ziqi, YANG Bin, ZHANG Yuanguang   

  1. School of Electrical Engineering,University of South China,Hengyang,Hunan 421001,China
  • Published:2024-06-06
  • About author:ZHAO Ziqi,born in 1998,postgraduate.His main research interests include traffic flow prediction and intelligent transportation.
    YANG Bin,born in 1980,Ph.D supervisor.His main research interests include information fusion,pattern recognition,and image processing.
  • Supported by:
    National Natural Science Foundation of China(61871210).

摘要: 准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有局限性。针对现有预测模型无法充分挖掘交通流的时空特性的问题,提出了基于改进的图自编码器和门控循环单元的分层交通预测模型。首先使用图注意力自编码器以无监督的方式深度挖掘交通流的空间特性,然后使用门控循环单元进行时间特征提取。分层结构采用分开训练的方式进行时空依赖关系的学习,旨在获取路网天然存在的空间拓扑特征,使其可以兼容不同时间步下的交通流预测任务。大量实验证明,所提出的GAE-GRU模型在不同数据集下的交通预测任务中取得了优异的表现,MAE,RMSE和MAPE指标均优于基线模型。

关键词: 交通流预测, 图自编码器, 门控循环单元, 分层, 时空依赖

Abstract: Accurate traffic flow prediction information not only provides traffic administrator with a strong foundation for traffic decisions,but also eases congestion.In traffic flow forecasting tasks,obtaining valid spatiotemporal characteristics of the traffic flow is a prerequisite to ensure the effectiveness of the forecast.Most of the existing methods use data from future moments for supervised learning,and the extracted features have limitations.To address the problem that existing prediction models cannot fully exploit the spatiotemporal characteristics of traffic flows,this paper proposes a hierarchical traffic prediction model based on an improved graph autoencoder and gated recurrent unit.The graph attention autoencoder is first used to deeply explore the spatial characteristics of the traffic flow in an unsupervised manner,and then the gated recurrent unit is used to extract temporal features.The hierarchical structure uses separate training for learning spatio-temporal dependencies,aiming to capture the naturally existing spatial topological features of the road network and make it compatible with traffic flow prediction tasks at different time steps.Extensive experiments demonstrate that the proposed GAE-GRU model achieves excellent performance in traffic prediction tasks on different datasets,with MAE,RMSE and MAPE outperforming the baseline model.

Key words: Traffic flow forecasting, Graph autoencoder, Gated recurrent neural unit, Hierarchical, Spatiotemporal dependencies

中图分类号: 

  • TP391
[1]MEDINA-SALGADO B,SANCHEZ-DELACRUZ E,POZOS-PARRA P,et al.Urban traffic flow prediction techniques:A review[J].Sustainable Computing:Informatics and Systems,2022,35:100739.
[2]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J].Journal of Transportation Enginee-ring,2003,129(6):664-672.
[3]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B:Methodological,1984,18(1):1-11.
[4]SMITH B L,WILLIAMS B M,OSWALD R K.Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,10(4):303-321.
[5]EMAMI A,SARVI M,BAGLOEE S A.Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors[J].Simulation Modelling Practice and Theory,2020,102:102025.
[6]HOU Q,LENG J,MA G,et al.An adaptive hybrid model for short-term urban traffic flow prediction[J].Physica A:Statistical Mechanics and its Applications,2019,527:121065.
[7]LIN G,LIN A,GU D.Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J].Information Sciences,2022,608:517-531.
[8]FENG X,LING X,ZHENG H,et al.Adaptive multi-kernelSVM with spatial-temporal correlation for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2001-2013.
[9]LIU Z,LIU Y,MENG Q,et al.A tailored machine learning approach for urban transport network flow estimation[J].Transportation Research Part C:Emerging Technologies,2019,108:130-150.
[10]ZHANG W,YU Y,QI Y,et al.Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J].Transportmetrica A:Transport Science,2019,15(2):1688-1711.
[11]MA C,DAI G,ZHOU J.Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(6):5615-5624.
[12]JIN X B,GONG W T,KONG J L,et al.PFVAE:a planar flow-based variational auto-encoder predicti on model for time series data[J].Mathematics,2022,10(4):610.
[13]CHEN Z,ZHAO B,WANG Y,et al.Multitask learning andGCN-based taxi demand prediction for a traffic road network[J].Sensors,2020,20(13):3776.
[14]ZHENG H,LIN F,FENG X,et al.A hybrid deep learning mo-del with attention-based conv-LSTM networks for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(11):6910-6920.
[15]GUO S,LIN Y,LI S,et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926.
[16]MA C,ZHAO Y,DAI G,et al.A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(4):3728-3737.
[17]BAO Y,HUANG J,SHEN Q,et al.Spatial-temporal complex graph convolution network for traffic flow prediction[J].Engineering Applications of Artificial Intelligence,2023,121:106044.
[18]ZHAO L,SONG Y,ZHANG C,et al.T-gcn:A temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(9):3848-3858.
[19]HUANG X,YE Y,DING W,et al.Multi-mode dynamic residual graph convolution network for traffic flow prediction[J].Information Sciences,2022,609:548-564.
[20]PENG H,WANG H,DU B,et al.Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J].Information Sciences,2020,521:277-290.
[21]RAJEH T M,LI T,LI C,et al.Modeling multi-regional temporal correlation with gated recurrent unit and multiple linear regression for urban traffic flow prediction[J].Knowledge-Based Systems,2023,262:110237.
[22]LI Q,HAN Z,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1).
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!