计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400148-6.doi: 10.11896/jsjkx.230400148
赵子琪, 杨斌, 张远广
ZHAO Ziqi, YANG Bin, ZHANG Yuanguang
摘要: 准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有局限性。针对现有预测模型无法充分挖掘交通流的时空特性的问题,提出了基于改进的图自编码器和门控循环单元的分层交通预测模型。首先使用图注意力自编码器以无监督的方式深度挖掘交通流的空间特性,然后使用门控循环单元进行时间特征提取。分层结构采用分开训练的方式进行时空依赖关系的学习,旨在获取路网天然存在的空间拓扑特征,使其可以兼容不同时间步下的交通流预测任务。大量实验证明,所提出的GAE-GRU模型在不同数据集下的交通预测任务中取得了优异的表现,MAE,RMSE和MAPE指标均优于基线模型。
中图分类号:
[1]MEDINA-SALGADO B,SANCHEZ-DELACRUZ E,POZOS-PARRA P,et al.Urban traffic flow prediction techniques:A review[J].Sustainable Computing:Informatics and Systems,2022,35:100739. [2]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J].Journal of Transportation Enginee-ring,2003,129(6):664-672. [3]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B:Methodological,1984,18(1):1-11. [4]SMITH B L,WILLIAMS B M,OSWALD R K.Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies,2002,10(4):303-321. [5]EMAMI A,SARVI M,BAGLOEE S A.Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors[J].Simulation Modelling Practice and Theory,2020,102:102025. [6]HOU Q,LENG J,MA G,et al.An adaptive hybrid model for short-term urban traffic flow prediction[J].Physica A:Statistical Mechanics and its Applications,2019,527:121065. [7]LIN G,LIN A,GU D.Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J].Information Sciences,2022,608:517-531. [8]FENG X,LING X,ZHENG H,et al.Adaptive multi-kernelSVM with spatial-temporal correlation for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2001-2013. [9]LIU Z,LIU Y,MENG Q,et al.A tailored machine learning approach for urban transport network flow estimation[J].Transportation Research Part C:Emerging Technologies,2019,108:130-150. [10]ZHANG W,YU Y,QI Y,et al.Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J].Transportmetrica A:Transport Science,2019,15(2):1688-1711. [11]MA C,DAI G,ZHOU J.Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(6):5615-5624. [12]JIN X B,GONG W T,KONG J L,et al.PFVAE:a planar flow-based variational auto-encoder predicti on model for time series data[J].Mathematics,2022,10(4):610. [13]CHEN Z,ZHAO B,WANG Y,et al.Multitask learning andGCN-based taxi demand prediction for a traffic road network[J].Sensors,2020,20(13):3776. [14]ZHENG H,LIN F,FENG X,et al.A hybrid deep learning mo-del with attention-based conv-LSTM networks for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(11):6910-6920. [15]GUO S,LIN Y,LI S,et al.Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926. [16]MA C,ZHAO Y,DAI G,et al.A novel STFSA-CNN-GRU hybrid model for short-term traffic speed prediction[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(4):3728-3737. [17]BAO Y,HUANG J,SHEN Q,et al.Spatial-temporal complex graph convolution network for traffic flow prediction[J].Engineering Applications of Artificial Intelligence,2023,121:106044. [18]ZHAO L,SONG Y,ZHANG C,et al.T-gcn:A temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(9):3848-3858. [19]HUANG X,YE Y,DING W,et al.Multi-mode dynamic residual graph convolution network for traffic flow prediction[J].Information Sciences,2022,609:548-564. [20]PENG H,WANG H,DU B,et al.Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J].Information Sciences,2020,521:277-290. [21]RAJEH T M,LI T,LI C,et al.Modeling multi-regional temporal correlation with gated recurrent unit and multiple linear regression for urban traffic flow prediction[J].Knowledge-Based Systems,2023,262:110237. [22]LI Q,HAN Z,WU X M.Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1). |
|