计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400172-7.doi: 10.11896/jsjkx.230400172

• 图像处理&多媒体技术 • 上一篇    下一篇

基于有损压缩编码的降噪自编码器

袁振, 刘进锋   

  1. 宁夏大学信息工程学院 银川 750021
  • 发布日期:2024-06-06
  • 通讯作者: 刘进锋(jfliu@nxu.edu.cn)
  • 作者简介:(yuanzhen1999@stu.nxu.edu.cn)
  • 基金资助:
    宁夏自然科学基金(2023AAC03126)

Denoising Autoencoders Based on Lossy Compress Coding

YUAN Zhen, LIU Jinfeng   

  1. Department of Information Engineering,Ningxia University,Yinchuan 750021,China
  • Published:2024-06-06
  • About author:YUAN Zhen,born in 1999,master.His main research interests include image classification and computer vision.
    LIU Jinfeng,born in 1971,Ph.D,professor,master supervisor.His main research interests include image proces-sing and heterogeneous computing.
  • Supported by:
    Ningxia Natural Science Foundation(2023AAC03126).

摘要: 图像预处理算法的优劣程度直接关系到图像后置处理的效果,如图像分割、目标检测、边缘提取等。为了获取高质量的数字图像,对图像进行降噪处理成了必不可少的前置步骤。图像降噪旨在尽可能地保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。为此,提出了一种基于有损压缩编码的卷积自编码器(AutoEnconders,AE)去噪模型;并根据最大编码率下降原则(the principle of Maximal Coding Rate Reduction,MCR2)设计了新的损失函数代替主流深度学习算法中常用的均方误差(Mean Squared Error,MSE)损失,以提高模型的鲁棒性和适应性。模型首先通过编码器处理带噪图像,得到隐变量,然后使用解码器进行解码,消除噪声并得到重构图像。接下来,保持编码器不变,将重构图像输入编码器,使编码器继续学习并得到重构隐变量。最后,通过计算隐变量与重构隐变量的距离来间接衡量重构图像与原始图像的误差,并将其作为收敛代价进行模型训练。在thumbnails128×128和CBSD68数据集上对所提模型进行了大量实验验证。实验结果表明,该自编码器框架(AE-MCR2)在不同类型的噪声(高斯噪声、伯努利噪声和泊松噪声)下均表现出良好的性能,并具有一定的可解释性。

关键词: 计算机视觉, 图像去噪, 自编码器, 卷积神经网络, 压缩编码

Abstract: The performance of image preprocessing algorithms is directly related to the effect of image post-processing,such as image segmentation,target detection,edge extraction,etc.In order to obtain high-quality digital images,image noise reduction has become an essential pre-step.Image noise reduction aims to maintain the integrity of the original information(i.e.,the main features) as much as possible,while being able to remove the useless information in the signal.To this end,this paper proposes a lossy compression coding based convolutional auto-encoders(AutoEnconders,AE) denoising model.According to the principle of maximal coding rate reduction(MCR2),a new loss function is designed to replace the mean squared error(MSE) loss commonly used in mainstream deep learning algorithms to improve the robustness and adaptability of the model.The model first processes the noisy image through an encoder to obtain the hidden variables,and then decodes it using a decoder to remove the noise and obtain the reconstructed image.Next,keeping the encoder unchanged,the reconstructed image is fed into the encoder so that the encoder continues to learn and obtains the reconstructed hidden variables.Finally,the error between the reconstructed image and the original image is indirectly measured by calculating the distance between the hidden variable and the reconstructed hidden variable,which is used as the convergence cost for model training.The proposed model is validated extensively on thumbnails128x128 and CBSD68 datasets,and the experimental results show that the self-encoder framework(AE-MCR2) exhibits good performance under different types of noise(Gaussian,Bernoulli,and Poisson) and has some interpretability.

Key words: Computer vision, Image denoising, Autoencoder, Convolutional neural network, Compression coding

中图分类号: 

  • TP391
[1]DWIVEDI N,SINGH D K.Review of deep learning techniques for gender classification in images[C]//Harmony Search and Nature Inspired Optimization Algorithms:Theory and Applications(ICHSA 2018).Springer Singapore,2019:1089-1099.
[2]BAJAJ K,SINGH D K,ANSARI M A.Autoencoders baseddeep learner for image denoising[J].Procedia Computer Science,2020,171:1535-1541.
[3]LEHTINEN J,MUNKBERG J,HASSELGREN J,et al.Noise2Noise:Learning image restoration without clean data[J].arXiv:1803.04189,2018.
[4]ELAD M,KAWAR B,VAKSMAN G.Image denoising:The deep learning revolution and beyond-a survey paper[J].SIAM Journal on Imaging Sciences,2023,16(3):1594-1654.
[5]XIE J,XU L,CHEN E.Image denoising and inpainting with deep neural networks[J].Advances in Neural Information Processing Systems,2012,25.
[6]DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[7]CANDÈS E J,WAKIN M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[8]BARANIUK R G.Compressive sensing[lecture notes][J].IEEE Signal Processing Magazine,2007,24(4):118-121.
[9]DUARTE M F,DAVENPORT M A,TAKHAR D,et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):83-91.
[10]ZHANG K,ZUO W,CHEN Y,et al.Beyond a gaussian denoiser:Residual learning of deep cnn for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155.
[11]ZHANG K,ZUO W,ZHANG L.FFDNet:Toward a fast andflexible solution for CNN-based image denoising[J].IEEE Transactions on Image Processing,2018,27(9):4608-4622.
[12]TIAN C,XU Y,ZUO W,et al.Designing and training of a dual CNN for image denoising[J].Knowledge-Based Systems,2021,226:106949.
[13]LIANG J,CAO J,SUN G,et al.Swinir:Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:1833-1844.
[14]MA Y,DERKSEN H,HONG W,et al.Segmentation of multivariate mixed data via lossy data coding and compression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1546-1562.
[15]YU Y D,KWAN H R C,YOU C,et al.Learning diverse and discriminative representations via the principle of maximal coding rate reduction[C]//Advances in Neural Information Processing Systems.2020.
[16]CHAN K H R,YU Y,YOU C,et al.ReduNet:A white-box deep network from the principle of maximizing rate reduction[J].The Journal of Machine Learning Research,2022,23(1):4907-5009.
[17]HINTON G E,ZEMEL R.Autoencoders,minimum description length and Helmholtz free energy[J].Advances in Neural Information Processing Systems,1993,6.
[18]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein gene-rative adversarial networks[C]//International Conference on Machine Learning.PMLR,2017:214-223.
[19]ZHAO S,SONG J,ERMON S.Infovae:Information maximizing variational autoencoders[J].arXiv:1706.02262,2017.
[20]DAI X,TONG S,LI M,et al.Closed-loop data transcription to an ldr via minimaxing rate reduction[J].arXiv:2111.06636,2021.
[21]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!