计算机科学 ›› 2024, Vol. 51 ›› Issue (1): 133-142.doi: 10.11896/jsjkx.230500133
金宇1, 陈红梅2,3,4,5, 罗川6
JIN Yu1, CHEN Hongmei2,3,4,5, LUO Chuan6
摘要: 知识图谱作为一种辅助信息,可以为推荐系统提供更多的上下文信息和语义关联信息,从而提高推荐的准确性和可解释性。通过将项目映射到知识图谱中,推荐系统可以将从知识图谱中学习到的外部知识注入到用户和项目的表示中,进而增强用户和项目的表示。但在学习用户偏好时,基于图神经网络的知识图谱推荐主要通过项目实体利用知识图谱中的属性信息和关系信息等知识信息。由于用户节点并不与知识图谱直接相连,这就导致不同的关系信息和属性信息在语义上和用户偏好方面是独立的,缺乏关联。这表明,基于知识图谱的推荐难以根据知识图谱中的信息来准确捕获用户的细粒度偏好。因此,针对用户细粒度兴趣难以捕捉的问题,提出了一种基于知识图谱的兴趣捕捉推荐算法。该算法利用知识图谱中的关系和属性信息来学习用户的兴趣,并增强用户和项目的嵌入表示。为了充分利用知识图谱中的关系信息,设计了关系兴趣模块以学习用户对不同关系的细粒度兴趣。该模块将每个兴趣表示为知识图谱中关系向量的组合,并利用图卷积神经网络在用户项目图和知识图谱中传递用户兴趣以学习用户和项目的嵌入表示。此外,还设计了属性兴趣模块以学习用户对不同属性的细粒度兴趣。该模块采用切分嵌入的方法为用户和项目匹配与之相似的属性,并使用与关系兴趣模块中相似的方法进行消息传播。最终,在两个基准数据集上进行实验,实验结果验证了该方法的有效性和可行性。
中图分类号:
[1]KUMAR P,THAKUR R S.Recommendation system tech-niques and related issues:a survey[J].International Journal of Information Technology,2018,10:495-501. [2]NAGARNAIK P,THOMAS A.Survey on recommendation system methods[C]//2015 2nd International Conference on Electronics and Communication Systems(ICECS).India:IEEE Press,2015:1603-1608. [3]WU L,HE X,WANG X,et al.A survey on accuracy-orientedneural recommendation:From collaborative filtering to information-rich recommendation[J].arXiv:2104.13030,2021. [4]JAVED U,SHAUKAT K,HAMMED I A,et al.A review ofcontent-based and context-based recommendation systems[J].International Journal of Emerging Technologies in Learning(iJET),2021,16(3):274-306. [5]WALEK B,FOJTIK V.A hybrid recommender system for recommending relevant movies using an expert system[J].Expert Systems with Applications,2020,158:113452. [6]WEI Y,WANG X,LI Q,et al.Contrastive learning for cold-start recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia.New York:Association for Computing Machinery,2021:5382-5390. [7]ZHOU J,CUI G,HU S,et al.Graph neural networks:A review of methods and applications[J].AI open,2020,1:57-81. [8]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on KnowledgeDisco-very & Data Mining.New York:Association for Computing Machinery,2019:950-958. [9]GOLDBER D,NICHOL D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. [10]COVIMGTON P,ADAMS J,SARGIN E.Deep neural networks for youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems.New York:Asso-ciation for Computing Machinery,2016:191-198. [11]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.New York:Association for Computing Machinery,2016:7-10. [12]ZHOU G,ZHU X,SONG C,et al.Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:Association for Computing Machinery,2018:1059-1068. [13]DONKERS T,LOEPP B,ZIEGLER J.Sequential user-based recurrent neural network recommendations[C]//Proceedings of the eleventh ACM Conference on Recommender Systems.New York:Association for Computing Machinery,2017:152-160. [14]WU S,TANG Y,ZHU Y,et al.Session-based recommendation with graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:Association for Computing Machinery,2019:346-353. [15]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.Xi’an:Virtual Event,2020:639-648. [16]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:Association for Computing Machinery,2019:165-174. [17]LIN Z,TIAN C,HOU Y,et al.Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the ACM Web Conference 2022.New York:Association for Computing Machinery,2022:2320-2329. [18]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.Lyon:Association for Computing Machinery,2018:1835-1844. [19]CAO Y,WANG X,HE X,et al.Unifying knowledge graphlearning and recommendation:Towards a better understanding of user preferences[C]//The World Wide Web Conference.San Francisco:Association for Computing Machinery,2019:151-161. [20]HUANG X,FANG Q,QIAN S,et al.Explainable interaction-driven user modeling over knowledge graph for sequential recommendation[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York:Association for Computing Machinery,2019:548-556. [21]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDDInterna-tional Conference on Knowledge Discovery & Data Mining.London:Association for Computing Machinery,2018:1531-1540. [22]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.Torino:Association for Computing Machinery,2018:417-426. [23]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference.San Francisco:Association for Computing Machinery,2019:3307-3313. [24]XU J,LANGE K.A proximal distance algorithm for likelihood-based sparse covariance estimation[J].Biometrika,2022,109(4):1047-1066. [25]SACENTI J A P,FILETO R,WILLRICH R.Knowledge graph summarization impacts on movie recommendations[J].Journal of Intelligent Information Systems,2022,58(1):43-66. [26]XU H,XU X J,MENG F J.Knowledge graph-assisted multi-task feature-based course recommendation algorithm [J].Computer Engineering and Applications,2021,57(21):132-139. [27]XU B,YI P Y,WANG J C,et al.High-order collaborative filtering recommendation system based on knowledge graph embedding[J].Computer Science,2021,48(S2):244-250. [28]PEI H,LIU X,HUANG X,et al.A personalized recommendation method under the cloud platform based on users’ long-term preferences and instant interests[J].Advanced Engineering Informatics,2022,54:101763. [29]DING M,DENG Z,HUANG Z,et al.Recovery of polyimidewaste film by mechanical method to improve the heat fade resistance of BPR matrix friction composites[J].Wear,2022,502:204398. [30]ZHANG Z.Improved adam optimizer for deep neural networks[C]//2018 IEEE/ACM 26th International Symposium on Qua-lity of Service(IWQoS).Banff:Association for Computing Machinery,2018:1-2. [31]GHATAK A.Initialization of Network Parameters[J].DeepLearning with R,2019:87-102. [32]HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.Japan:Association for Computing Machinery,2017:355-364. [33]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path basedcontext for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery & Data Mining.London:Association for Computing Machinery,2018:1531-1540. [34]AI Q,AZIZI V,CHEN X,et al.Learning heterogeneous know-ledge base embeddings for explainable recommendation[J].Algorithms,2018,11(9):137. [35]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:Association for Computing Machinery,2016:353-362. [36]WANG H,ZHANG F,ZHANG M,et al.Knowledge-awaregraph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Anchorage:Association for Computing Machinery,2019:968-977. |
|