计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 71-79.doi: 10.11896/jsjkx.230500218
李腾1, 李德玉1,2, 翟岩慧1,2, 张少霞3
LI Teng1, LI Deyu1,2, ZHAI Yanhui1,2, ZHANG Shaoxia3
摘要: 以往的形式概念分析采用介粒度形式背景,满足对数据跨层粒化的需求,但其既没有将寻找最优粒度和属性约简有效结合起来,又没有在多粒度的背景下高效地解决组合爆炸问题。为此,基于介粒度中粒度选择和属性约简的联系,提出了一种新的最优粒度选择方式——最优粒度约简,以同步进行粒度选择和属性约简。鉴于寻找最优粒度约简存在组合爆炸的问题,设计了逐步搜索方法,通过已搜索的信息更新粒度空间,去除大量非最优粒度约简,显著提高了搜索效率。实验结果表明了所提方法的有效性和优势。
中图分类号:
[1]WILLE R.Restructuring lattice theory:An approach based onhierarchies of concepts[C]//IVAN R.Ordered Sets.Berlin,Germany:Springer,1982:445-470. [2]ZHANG L,ZHANG B.Quotient space based problem solving:A theoretical foundation of granular computing[M].Beijing,China:TsinghuaUniversity Press,2014. [3]MULKAR-MEHTA R,HOBBS J,HOVY E.Granularity innatural language discourse[C]//Proceedings of the 9th International Conference on Computational Semantics.Stroudsburg,USA:ACL,2011:360-364. [4]WEI L,WAN Q.Granular Transformation and irreducible element judgment theory based on pictorial diagrams[J].IEEE Transactions on Cybernetics,2016,46(2):380-387. [5]LI F,HU B Q.A new approach of optimal scale selection tomulti-scale decision tables[J].Information Sciences,2017,381,193-208. [6]YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353. [7]CHENG Y L,ZHANG Q H,WANG G Y,et al.Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision[J].Information Sciences,2020,541(1):36-59. [8]HAO C,LI J H,FAN M,et al.Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J].Information Sciences,2017,415/416:213-232. [9]MIAO D Q,ZHANG,Q H,QIAN Y H,et al.From human intelligence to machine implementation model:Theories and applications based ongranular computing[J].CAAI Transactions on Intelligent Systems,2016,11(6):743-757. [10]ZENG W L,ZHE Y H.Object-oriented multigranulation formal concept analysis[J].Computer Science,2018,45(10):51-53,63. [11]ZHANG C,BAI W H,LI D Y,et al.Multiple attribute group decision making based on multigranulation probabilistic models,MULTIMOORA and TPOP in incomplete q-rung orthopair fuzzy information systems[J].International Journal of Approximate Reasoning,2022,143(4):102-120. [12]PANG J F,SONG P,LIANG J Y.Review on multi-granulationcomputing models and methods for decision analysis[J].Pattern Recognition and Artificial Intelligence,2021,34(12):1120-1130. [13]WANG Q,LI D Y,ZHAI Y H,et al.Parameterized fuzzy decision implication[J].Journal of Computer Research and Development,2022,59(9):2066-2074. [14]ZHANG S X,LI D Y,ZHAI Y H.Incremental method of gene-rating decision implication canonical basis[J].Soft Computing:A Fusion of Foundations,Methodologies and Applications,2022,26(3):1067-1083. [15]ZHAI Y H,JIA N,ZHANG S X,et al.Study on deductionprocess and inference methods of decision implications[J].International Journal of Machine Learning and Cybernetics,2022,13(7):1959-1979. [16]ZHANG C,LI D Y.Interval-valued hesitant fuzzy graphs decision making with correlations and prioritization relationships[J].Journal of Computer Research and Development,2019,56(11):2438-2447. [17]LI J H,WU W Z,DENG S.Multi-scale theory in formal conceptanalysis[J].Journal of Shandong University(Natural Science),2019,54(2):30-40. [18]LI J H,LI Y F,MI Y L,et al.Meso-granularity labeled method for multi-granularity formalconcept analysis[J].Journal of Computer Research and Development,2020,57(2):447-458. [19]WU W Z,LEUNG Y,MI J S.Granular computing and know-ledge reduction in formal contexts[J].IEEE Transaction on Knowledge and Data Engineering,2009,10(21):1461-1474. [20]HAO C,FAN M,LI J H,et al.Optimal scale selection in multi-scale contexts based on granular scale rules[J].Pattern Recognition and Artificial Intelligence,2016,29(3):272-280. [21]LI J H,HE J J.Uncertainty measurement and optimal granularity selection for multi-granularity formal context[J].Control and Decision,2022,37(5):1299-1308. [22]LI J H,ZHOU X R.Attribute reduction in multi-granularityformal decision contexts[J].Pattern Recognition and Artificial Intelligence,2022,35(5):387-400. [23]ZHANG W X,QIU G F.Uncertain decision making based onrough set[M].Beijing,China:Tshinghua University Press,2005. |
|