计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 71-79.doi: 10.11896/jsjkx.230500218

• 粒计算与知识发现 • 上一篇    下一篇

介粒度空间中的最优粒度选择和属性约简

李腾1, 李德玉1,2, 翟岩慧1,2, 张少霞3   

  1. 1 山西大学计算机与信息技术学院 太原030006
    2 计算智能与中文信息处理教育部重点实验室(山西大学) 太原030006
    3 山西财经大学信息学院 太原030006
  • 收稿日期:2023-05-29 修回日期:2023-07-27 出版日期:2023-10-10 发布日期:2023-10-10
  • 通讯作者: 李德玉(lidysxu@163.com)
  • 作者简介:(lt596018984@163.com)
  • 基金资助:
    国家自然科学基金(62072294,61972238);山西省基础研究计划资助项目(202103021223303)

Optimal Granularity Selection and Attribute Reduction in Meso-granularity Space

LI Teng1, LI Deyu1,2, ZHAI Yanhui1,2, ZHANG Shaoxia3   

  1. 1 School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China
    2 Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),Ministry of Education,Taiyuan 030006,China
    3 College of Information,Shanxi University of Finance and Economics,Taiyuan 030006,China
  • Received:2023-05-29 Revised:2023-07-27 Online:2023-10-10 Published:2023-10-10
  • About author:LI Teng,born in 1999, master.His main research interests include data mining and formal concept analysis.LI Deyu,born in 1965, Ph.D,professor,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include data mining and multi-label learning.
  • Supported by:
    National Natural Science Foundation of China(62072294,61972238) and Fundamental Research Program of Shanxi Province(202103021223303).

摘要: 以往的形式概念分析采用介粒度形式背景,满足对数据跨层粒化的需求,但其既没有将寻找最优粒度和属性约简有效结合起来,又没有在多粒度的背景下高效地解决组合爆炸问题。为此,基于介粒度中粒度选择和属性约简的联系,提出了一种新的最优粒度选择方式——最优粒度约简,以同步进行粒度选择和属性约简。鉴于寻找最优粒度约简存在组合爆炸的问题,设计了逐步搜索方法,通过已搜索的信息更新粒度空间,去除大量非最优粒度约简,显著提高了搜索效率。实验结果表明了所提方法的有效性和优势。

关键词: 形式概念分析, 多粒度决策形式背景, 最优粒度, 属性约简, 粒计算

Abstract: The conventional formal concept analysis adopts a meso-granularity formal context to meet the requirements of cross-layer granulation of data.However,it does not effectively combine the search for optimal granularity with attribute reduction,nor does it efficiently solve the problem of combination explosion in a multi-granular context.Therefore,based on the connection between granularity selection and attribute reduction in the meso-granularity,a new optimal granularity selection method(i.e.,optimal granularity reduction) is proposed to synchronize the selection of the optimal granularity and attribute reduction.In view of the combination explosion in searching for optimal granularity reduction,a stepwise search method is designed to update the gra-nularity space with searched information,eliminating a large number of non-optimal granularity reduction and significantly improving search efficiency.Experimental results demonstrate the effectiveness and superiority of this method.

Key words: Formal concept analysis, Multi-granularity decision formal context, Optimal granularity, Attribute reduction, Granular computing

中图分类号: 

  • TP182
[1]WILLE R.Restructuring lattice theory:An approach based onhierarchies of concepts[C]//IVAN R.Ordered Sets.Berlin,Germany:Springer,1982:445-470.
[2]ZHANG L,ZHANG B.Quotient space based problem solving:A theoretical foundation of granular computing[M].Beijing,China:TsinghuaUniversity Press,2014.
[3]MULKAR-MEHTA R,HOBBS J,HOVY E.Granularity innatural language discourse[C]//Proceedings of the 9th International Conference on Computational Semantics.Stroudsburg,USA:ACL,2011:360-364.
[4]WEI L,WAN Q.Granular Transformation and irreducible element judgment theory based on pictorial diagrams[J].IEEE Transactions on Cybernetics,2016,46(2):380-387.
[5]LI F,HU B Q.A new approach of optimal scale selection tomulti-scale decision tables[J].Information Sciences,2017,381,193-208.
[6]YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353.
[7]CHENG Y L,ZHANG Q H,WANG G Y,et al.Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision[J].Information Sciences,2020,541(1):36-59.
[8]HAO C,LI J H,FAN M,et al.Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J].Information Sciences,2017,415/416:213-232.
[9]MIAO D Q,ZHANG,Q H,QIAN Y H,et al.From human intelligence to machine implementation model:Theories and applications based ongranular computing[J].CAAI Transactions on Intelligent Systems,2016,11(6):743-757.
[10]ZENG W L,ZHE Y H.Object-oriented multigranulation formal concept analysis[J].Computer Science,2018,45(10):51-53,63.
[11]ZHANG C,BAI W H,LI D Y,et al.Multiple attribute group decision making based on multigranulation probabilistic models,MULTIMOORA and TPOP in incomplete q-rung orthopair fuzzy information systems[J].International Journal of Approximate Reasoning,2022,143(4):102-120.
[12]PANG J F,SONG P,LIANG J Y.Review on multi-granulationcomputing models and methods for decision analysis[J].Pattern Recognition and Artificial Intelligence,2021,34(12):1120-1130.
[13]WANG Q,LI D Y,ZHAI Y H,et al.Parameterized fuzzy decision implication[J].Journal of Computer Research and Development,2022,59(9):2066-2074.
[14]ZHANG S X,LI D Y,ZHAI Y H.Incremental method of gene-rating decision implication canonical basis[J].Soft Computing:A Fusion of Foundations,Methodologies and Applications,2022,26(3):1067-1083.
[15]ZHAI Y H,JIA N,ZHANG S X,et al.Study on deductionprocess and inference methods of decision implications[J].International Journal of Machine Learning and Cybernetics,2022,13(7):1959-1979.
[16]ZHANG C,LI D Y.Interval-valued hesitant fuzzy graphs decision making with correlations and prioritization relationships[J].Journal of Computer Research and Development,2019,56(11):2438-2447.
[17]LI J H,WU W Z,DENG S.Multi-scale theory in formal conceptanalysis[J].Journal of Shandong University(Natural Science),2019,54(2):30-40.
[18]LI J H,LI Y F,MI Y L,et al.Meso-granularity labeled method for multi-granularity formalconcept analysis[J].Journal of Computer Research and Development,2020,57(2):447-458.
[19]WU W Z,LEUNG Y,MI J S.Granular computing and know-ledge reduction in formal contexts[J].IEEE Transaction on Knowledge and Data Engineering,2009,10(21):1461-1474.
[20]HAO C,FAN M,LI J H,et al.Optimal scale selection in multi-scale contexts based on granular scale rules[J].Pattern Recognition and Artificial Intelligence,2016,29(3):272-280.
[21]LI J H,HE J J.Uncertainty measurement and optimal granularity selection for multi-granularity formal context[J].Control and Decision,2022,37(5):1299-1308.
[22]LI J H,ZHOU X R.Attribute reduction in multi-granularityformal decision contexts[J].Pattern Recognition and Artificial Intelligence,2022,35(5):387-400.
[23]ZHANG W X,QIU G F.Uncertain decision making based onrough set[M].Beijing,China:Tshinghua University Press,2005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!