计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600082-10.doi: 10.11896/jsjkx.230600082
尹萍, 谈果戈, 宋伟, 谢涛涛, 姜建彪, 宋洪圆
YIN Ping, TAN Guoge, SONG Wei, XIE Taotao, JIANG Jianbiao, SONG Hongyuan
摘要: Kubernetes作为当前云资源管理的标准平台,因其默认调度机制的局限性,目前普遍采用基于群智能优化算法的改进方法进行Pod的调度。而针对群智能优化算法存在的寻优性能易受初值影响、迭代后期容易早熟收敛等问题,选择金枪鱼群优化(Tuna Swarm Optimization,TSO)作为基础算法,根据混沌映射具有的遍历性、随机性等特点,提出了基于混沌映射的种群初始化优化方案。选择目前研究中普遍涉及的Tent、Logistic等多种混沌映射,分别对金枪鱼种群进行初始化,以提高初始种群的多样性。通过一系列基准测试函数进行仿真实验,对比基于不同混沌映射的改进金枪鱼群优化算法的实验结果,证明了基于混沌映射的优化方案可以有效提高原始TSO算法的收敛速度和寻优精度。
中图分类号:
[1]HU C P,XUE T.Kubernetes Resource Scheduling Algorithm Based on Genetic Algorithm[J].Computer Systems & Applications,2021,30(9):152-160. [2]GENG B B,WANG Y.Improved Bald Eagle Search Algorithm for Kubernetes Resource Scheduling Application[J].Computer Systems & Applications,2023,32(4):187-196. [3]YU Z C,ZHANG N,BAO Z Q,et al.Research and improvement of resource scheduling strategy based on Kubernetes[J].Intelligent Computer andApplications,2023,13(2):1-5,14. [4]DORIGO M,MANIEZZO V,COLORNI A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),1996,26:29-41. [5]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Icnn95-international Conference on Neural Networks.New York IEEE,1995:1942-1948. [6]KARABOGA D,BASTURK B.On the performance of artificial beecolony(ABC) algorithm[J].Applied Soft Computing,2008,8(3):687-697. [7]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. [8]MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67. [9]MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al.Salp swarm algorithm:a bio-inspired optimizerfor engineering design problems[J].Advances in Engineering Software,2017,114:163-191. [10]ARORA S,SINGH S.Butterfly optimization algorithm:a novel approach for global optimization[J].Soft computing,2019,23(3):715-734. [11]XUE J K,SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34. [12]DHIMAN G,KUMAR V.Seagull optimization algorithm:theory and its applications for large-scale industrial engineering problems[J].Knowledge-Based Systems,2019,165(2):169-196. [13]XIE L,HAN T,ZHOU H,et al.Tuna swarm optimization:a novel swarm-based metaheuristic algorithm for global optimization[J].Computational Intelligence and Neuroscience,2021,2021:1-22. [14]TUERXUN W,XU C,GUO H Y,et al.An ultra-short-termwind speed prediction model using LSTM based on modified tuna swarm optimization and successive variational mode decomposition[J].Energy Science & Engineering,2022,10:3001-3022. [15]TUERXUN W,XU C,GUO H Y,et al.Fault classification in wind turbine based on deep belief network optimized by modified tuna swarm optimization algorithm[J].Journal of Renewable and Sustainable Energy,2022,14(3):033307. [16]WANG J Y,ZHU L K,WU B W,et al.Forestry canopy image segmentation based on improved tuna swarm optimization[J].Forests,2022,13(11):1-18. [17]XUE P,LIU L,WANG Y R,et al.Calculating the Coefficients in the Jensen Model Using the Tuna Swarm Optimization Algorithm[J].Journal of Irrigation and Drainage,2022,41(11):22-29. [18]HUANG Y C,ZHANG L B.Improved Whale Optimization Algorithm and Its Application[J].Computer Engineering and Applications,2019,55(21):220-226,270. [19]KUMAR C,MAGDAKLIN M D.A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules[J].Optik,2022,264:1-22. [20]LI H,LI W J.Improved Tuna Swarm Optimization Algorithm Based on Hybrid Strategy[J].Guangxi Sciences,2023,30(1):208-218. [21]HU D,YANG S H.Photovoltaic Power Prediction Based on Improved Tuna Algorithm Optimized ELM Model[J].Journal of Wuhan University of Technology,2022,44(8):97-104. [22]YAN Z P,YAN J Y,WU Y F,et al.A novel reinforcement learning based tuna swarm optimization algorithm for autonomous underwater vehicle path planning[J].Mathematics and Computers in Simulation,2023,209:55-86. [23]ZHANG T,WANG H W,WANG C Z.Mutative Scale Chaos Optimization Algorithm and Its Application[J].Control and Design,1999,14(3):285-288. [24]YANG S P,LI Z Y,CHEN Z X.Particle Swarm Optimization Algorithm Based on Chaotic Searching and People Crossover Operator[J].Computer Simulation,2016,33(3):218-222. |
|