计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 224-230.doi: 10.11896/jsjkx.200600016

• 人工智能 • 上一篇    下一篇

基于改进的蝗虫优化算法的红细胞供应预测方法

刘奇1, 陈红梅2, 罗川3   

  1. 1 西南交通大学唐山研究生院 河北 唐山063000
    2 西南交通大学信息科学与技术学院 成都611756
    3 四川大学计算机学院 成都610065
  • 收稿日期:2020-06-01 修回日期:2020-08-26 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 陈红梅(hmchen@swjtu.edu.cn)
  • 作者简介:success467@163.com
  • 基金资助:
    国家自然科学基金(61976182,61572406,6207022096);四川省国际科技创新合作重点项目(2019YFH0097);四川省科技厅应用基础研究计划项目(2019YJ0084)

Method for Prediction of Red Blood Cells Supply Based on Improved Grasshopper Optimization Algorithm

LIU Qi1, CHEN Hong-mei2, LUO Chuan3   

  1. 1 Graduate School of Tangshan,Southwest Jiaotong University,Tangshan,Hebei 063000,China
    2 School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China
    3 College of Computer Science,Sichuan University,Chengdu 610065,China
  • Received:2020-06-01 Revised:2020-08-26 Online:2021-02-15 Published:2021-02-04
  • About author:LIU Qi,born in 1996,postgraduate.His main research interests include machine learning and data mining.
    CHEN Hong-mei,born in 1971,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include granular calculation,rough sets and intelligent information processing.
  • Supported by:
    The National Natural Science Foundation of China(61976182,61572406,6207022096),Key Program for International S & T Cooperation of Sichuan Province(2019YFH0097) and Applied Basic Research Programs of Science and Technology Department of Sichuan Province(2019YJ0084).

摘要: 当前国内“血荒”问题比较严峻,血站与用血单位之间存在着血液供不应求的现象。针对这个问题,提出了一种基于改进的蝗虫优化算法的LSTM预测方法,用于对未来的红细胞供应情况进行预测,为血站工作人员在制定采血计划以及制备计划时提供有效的指导。该预测模型通过使用长短期记忆网络(Long-Short Term Memory Network,LSTM)来捕捉历史红细胞库存数据之间的潜在规律,以达到对未来的供应情况进行预测的效果。首先,针对蝗虫优化算法容易陷入局部最优、收敛速度较慢的问题,通过加入基于折射原理的反向学习机制与混沌映射,加快蝗虫优化算法的收敛速度,使其具备更强的搜索能力。其次,为提高LSTM的预测性能,将改进的蝗虫优化算法与LSTM相结合,并使用某地区的红细胞库存真实数据作为实验数据,用于验证改进的LSTM预测模型的性能。与标准LSTM相比,所提方法的MAE,MAPE,RMSE分别降低了39.827 8,1.10%,55.819 1。实验结果证明,提出的方法具有较高的可靠性。

关键词: 长短期记忆网络, 反向学习, 红细胞供应预测, 蝗虫优化算法, 混沌映射

Abstract: At present,the problem of blood supply shortage is quite serious.There exists the phenomenon that short supply happen between blood stations and institutions that use blood.Aiming at such a problem,the LSTM prediction method based on the improved grasshopper optimization algorithm(GOA) is proposed in order to predict red blood cells supply in the future and provide effective guidance for workers in making blood collection plan and preparation plan.By using LSTM to capture the under-lying patterns between the historical data,the effect of predicting the future can be achieved.There are two parts of work.Firstly,aiming at the problem that the conventional GOA is easy to fall into local optimum and has a slower convergence speed,the model of refracting opposite-based learning and chaotic mapping are introduced to GOA so as to improve the global exploration capability.Secondly,in order to improve the accuracy of LSTM,it is combined with the improved GOA and evaluate the perfor-mance of the improved LSTM model by using the real data of red blood cells supply in a certain area.Comparing to the conventional LSTM,the MAE,MAPE,RMSE are reduced by 39.827 8,1.10%,55.819 1,respectively.The experimental results show that the proposed method has higher reliability.

Key words: Chaotic mapping, Grasshopper optimization algorithm, Long short-term memory, Opposite-based learning, Prediction of red blood cells supply

中图分类号: 

  • TP389
[1] LI J,FAN J,LI M Z,et al.Discussion on the advantages of mo-dern inventory management in blood inventory optimization management[J].Chinese Journal of Blood Transfusion,2019,32(10):1038-1041.
[2] KURUP R,ANDERSON A,BOSTON C,et al.A study onblood product usage and wastage at the public hospital,Guyana[J].BMC Research Notes,2016,9(1):307-312.
[3] ZHAO H X,YU Q,CHEN F.Application of allocation mechanism in red blood cell inventory management in blood center[J].Journal of Clinical Hematology,2019,32(12):962-964.
[4] YE M L,LI C L.Thinking on blood inventory management inblood station[J].China Medicine and Pharmacy,2019,9(12):255-257.
[5] CUI Y L,ZHAO F J,JIA J,et al.Research analysis of the system of blood supply in Hebei province[J].Chinese Journal of Blood Transfusion,2018,31(4):418-423.
[6] KHALDI R,ELAFIA A,CHIHEB R,et al.Artificial neuralnetwork based approach for blood demand forecasting:Fez transfusion blood center case study[C]//Proceedings of the 2nd International Conference on Big Data,Cloud and Applications.2017:1-6.
[7] FANOODI B,MALMIR B,JAHANTIGH F F.Reducing de-mand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models[J].Computers in Biology and Medicine,2019,113:103415.
[8] FORTSCH S M,KHAPALOVA E A.Reduc-ing uncertainty in demand for blood[J].Operations Research for Health Care,2016,9:16-28.
[9] ZHENG Y P,FAN L.A LSTM-based Forecast Method forClinical Blood Demand[J].Computer and Modernization,2018,273(5):45-48,124.
[10] NANDI A K,ROBERTS D J,NANDI A K.Prediction paradigm involving time series applied to total blood issues data from England[J].Transfusion,2020,60(3):535-543.
[11] BUKHARI A H,RAJA M A Z,SULAIMAN M,et al.Fractio-nal neuro-sequential ARFIMA-LSTM for financial market forecasting[J].IEEE Access,2020,8:71326-71338.
[12] LI X,PENG L,YAO X,et al.Long short-term memory neural network for air pollutant concentration predictions:Method develop-ment and evaluation[J].Environmental polluteon,2017,231:997-1004.
[13] WANG Y,LIU Y,WANG M,et al.Lstm model optimization on stock price forecasting[C]// 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (dcabes).IEEE,2018:173-177.
[14] HOLLAND J H.Genetic algorithms[J].Scientific American,1992,267(1):66-73.
[15] MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[16] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks.IEEE,1995:1942-1948.
[17] SAREMI S,MIRJALILI S,LEWIS A.Gras-shopper optimisa-tion algorithm:theory and application[J].Advances in Enginee-ring Software,2017,105:30-47.
[18] YANG X S,GANDOMI A H.Bat algorithm:a novel approach for global engineering optimization[J].Engineering computations,2012,29(5):464-483.
[19] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[20] BARMAN M,CHOUDHURY N B D,SUTRADHAR S.A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam,India[J].Energy,2018,145:710-720.
[21] TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce (CIMCAIAW-TIC'06).IEEE,2005,1:695-701.
[22] ZHOU J,FANG W,WU X,et al.An opposition-based learning competitive particle swarm optimizer[C]//2016 IEEE Congress on Evolutionary Computation (CEC).IEEE,2016:515-521.
[23] LONG W,WU T,CAI S,et al.A novel grey wolf optimizer algorithm with refraction learning[J].IEEE Access,2019,7:57805-57819.
[24] ARORA S,ANAND P.Chaotic grasshopper optimization algorithm for global optimization[J].Neural Computing and Applications,2019,31(8):4385-4405.
[25] LI J,CHENG Y,CHEN K.Chaotic particle swarm optimization algorithm based on adaptive inertia weight[C]//The 26th Chinese Control and Decision Conference(2014 CCDC).IEEE,2014:1310-1315.
[26] SHAO P,WU Z,ZHOU X,et al.FIR digital filter design using improved particle swarm optimization based on refraction principle[J].Soft Computing,2017,21(10):2631-2642.
[1] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[2] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[3] 康雁, 徐玉龙, 寇勇奇, 谢思宇, 杨学昆, 李浩.
基于Transformer和LSTM的药物相互作用预测
Drug-Drug Interaction Prediction Based on Transformer and LSTM
计算机科学, 2022, 49(6A): 17-21. https://doi.org/10.11896/jsjkx.210400150
[4] 王飞, 黄涛, 杨晔.
基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究
Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion
计算机科学, 2022, 49(6A): 784-789. https://doi.org/10.11896/jsjkx.210400030
[5] 高堰泸, 徐圆, 朱群雄.
基于A-DLSTM夹层网络结构的电能消耗预测方法
Predicting Electric Energy Consumption Using Sandwich Structure of Attention in Double -LSTM
计算机科学, 2022, 49(3): 269-275. https://doi.org/10.11896/jsjkx.210100006
[6] 刘嘉琛, 秦小麟, 朱润泽.
基于LSTM-Attention的RFID移动对象位置预测
Prediction of RFID Mobile Object Location Based on LSTM-Attention
计算机科学, 2021, 48(3): 188-195. https://doi.org/10.11896/jsjkx.200600134
[7] 彭斌, 李征, 刘勇, 吴永豪.
基于卷积神经网络的代码注释自动生成方法
Automatic Code Comments Generation Method Based on Convolutional Neural Network
计算机科学, 2021, 48(12): 117-124. https://doi.org/10.11896/jsjkx.201100090
[8] 景丽, 何婷婷.
基于改进TF-IDF和ABLCNN的中文文本分类模型
Chinese Text Classification Model Based on Improved TF-IDF and ABLCNN
计算机科学, 2021, 48(11A): 170-175. https://doi.org/10.11896/jsjkx.210100232
[9] 赵佳琦, 王瀚正, 周勇, 张迪, 周子渊.
基于多尺度与注意力特征增强的遥感图像描述生成方法
Remote Sensing Image Description Generation Method Based on Attention and Multi-scale Feature Enhancement
计算机科学, 2021, 48(1): 190-196. https://doi.org/10.11896/jsjkx.200600076
[10] 张玉帅, 赵欢, 李博.
基于BERT和BiLSTM的语义槽填充
Semantic Slot Filling Based on BERT and BiLSTM
计算机科学, 2021, 48(1): 247-252. https://doi.org/10.11896/jsjkx.191200088
[11] 胡鹏程, 刁力力, 叶桦, 仰燕兰.
基于人工特征与深度特征的DGA域名检测算法
DGA Domains Detection Based on Artificial and Depth Features
计算机科学, 2020, 47(9): 311-317. https://doi.org/10.11896/jsjkx.191000118
[12] 崔彤彤, 王桂玲, 高晶.
基于1DCNN-LSTM的船舶轨迹分类方法
Ship Trajectory Classification Method Based on 1DCNN-LSTM
计算机科学, 2020, 47(9): 175-184. https://doi.org/10.11896/jsjkx.191000162
[13] 吕亿林, 田宏韬, 高建伟, 万怀宇.
结合百科知识与句子语义特征的关系抽取方法
Relation Extraction Method Combining Encyclopedia Knowledge and Sentence Semantic Features
计算机科学, 2020, 47(6A): 40-44. https://doi.org/10.11896/JsJkx.190700042
[14] 陈晋音, 蒋焘, 郑海斌.
基于信噪比分级的信号调制类型识别
Radio Modulation Recognition Based on Signal-noise Ratio Classification
计算机科学, 2020, 47(6A): 310-317. https://doi.org/10.11896/JsJkx.190800073
[15] 班多晗, 吕鑫, 王鑫元.
基于一维混沌映射的高效图像加密算法
Efficient Image Encryption Algorithm Based on 1D Chaotic Map
计算机科学, 2020, 47(4): 278-284. https://doi.org/10.11896/jsjkx.190600059
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!