计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 256-262.doi: 10.11896/jsjkx.230600204
田思成1, 黄少滨1, 王锐1, 李熔盛1, 杜治娟2,3
TIAN Sicheng1, HUANG Shaobin1, WANG Rui1, LI Rongsheng1, DU Zhijuan2,3
摘要: 反向词典任务是一种新兴的任务,目的是根据给定的定义来查找对应的单词。大规模语言模型为这一任务提供了新的可能性,但是提示语句的质量会影响大模型的性能。为此,提出了一种基于对比学习的提示生成方法。该方法在从多个语义层面上理解定义语义的同时,还利用对比学习的原理在训练过程中引入了负例,提升了模型的泛化能力。通过这种方法,可以将目标单词缩小到一个小范围内,然后用大模型从这个范围内选择最符合定义语义的单词。实验结果表明,该方法可以有效地提升大规模语言模型在反向词典任务上的表现。提示生成模型有 94.7% 的概率生成包含目标词的范围,大规模语言模型有 58.03% 的概率直接选出目标单词,有 74.55% 的概率在给出5个候选单词时包含目标单词。
中图分类号:
[1]MICKUS T,VAN DEEMTER K,CONSTANT M,et al.Sem-Eval-2022 Task 1:CODWOE-Comparing Dictionaries and Word Embeddings[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:1-14. [2]QI F,ZHANG L,YANG Y,et al.Wantwords:An open-source online reverse dictionary system[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Proces-sing:system demonstrations.2020:175-181. [3]ARDOIZ A,ORTEGA-MARTÍN M,GARCÍA-SIERRA Ó,et al.MMG at SemEval-2022 Task 1:A Reverse Dictionary approach based on a review of the dataset from a lexicographic perspective[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:68-74. [4]TRANT H H,MARTINC M,PURVER M,et al.JSI at Sem-Eval-2022 Task 1:CODWOE-Reverse Dictionary:Monolingual and cross-lingual approaches[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:101-106. [5]KHOSLA P,TETERWAK P,WANG C,et al.Supervised con-trastive learning [J].Neural Information Processing Systems,2020,33:18661-18673. [6]YE H,ZHANG N,DENG S,et al.Contrastive triple extraction with generative transformer[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14257-14265. [7]GADETSKY A,YAKUBOVSKIY I,VETROV D.ConditionalGenerators of Words Definitions[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).2018:266-271. [8]CHANG T Y,CHI T C,TSAI S C,et al.xSense:Learning sense-separated sparse representations and textual definitions for explainable word sense networks [J].arXiv:1809.03348,2018. [9]BENDAHMAN N,BRETON J,NICOLAIEFF L,et al.Re-search at SemEval-2022 Task 1:Deep networks for Reverse Dictionary using embeddings and LSTM autoencoders[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:94-100. [10]LI B,WENG Y,XIA F,et al.LingJing at SemEval-2022 task 1:Multi-task self-supervised pre-training for multilingual reverse dictionary[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:29-35. [11]CHEN P,ZHAO Z.Edinburgh at SemEval-2022 Task 1:Jointly Fishing for Word Embeddings and Definitions[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(Sem-Eval-2022).2022:75-81. [12]KORENČIĆD,GRUBISIC I.IRB-NLP at SemEval-2022 Task 1:Exploring the Relationship Between Words and Their Semantic Representations[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:36-59. [13]KONG C,WANG Y,CHONG R,et al.BLCU-ICALL at SemEval-2022 Task 1:Cross-Attention Multitasking Framework for Definition Modeling[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:23-28. [14]SRIVASTAVA A,VEMULAPATI H V.TLDR at SemEval-2022 task 1:Using transformers to learn dictionaries and representations[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:60-67. [15]CERNIAVSKI R,STYMNE S.Uppsala University at SemEval-2022 Task 1:Can Foreign Entries Enhance an English Reverse Dictionary?[C]//Proceedings of the 16th International Workshop on Semantic Evaluation(SemEval-2022).2022:88-93. [16]LI R,LI Z,HUANG S,et al.TransExplain:Using neural networks to find suitable explanations for Chinese phrases [J].Expert Systems with Applications,2021,183:115440. [17]CHANG T Y,CHEN Y N.What does this word mean? explaining contextualized embeddings with natural language definition[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJC-NLP).2019:6064-6070. [18]HAFIDI H,GHOGHO M,CIBLAT P,et al.Negative sampling strategies for contrastive self-supervised learning of graph representations[J].Signal Processing,2022,190:108310. [19]JIANG R,NGUYEN T,ISHWAR P,et al.Supervised Contrastive Learning with Hard Negative Samples [J].arXiv:2209.00078,2022. [20]HOPFIELD J J.Neural networks and physical systems withemergent collective computational abilities[J].Proceedings of the National Academy of Sciences,1982,79(8):2554-2558. [21]AUGUSTYNIAK Ł,KAJDANOWICZ T,KAZIENKO P.Aspect detection using word and char embeddings with(Bi) LSTM and CRF[C]//2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering(AIKE).IEEE,2019:43-50. [22]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition [J].IEEE,1998.86:2278-2324. [23]LIN Z,FENG M,DOS SANTOS C,et al.A structured self-attentive sentence embedding[C]//International Conference on Learning Representations.International Conference on Learning Representations.ICLR,2017. [24]NORASET T,LIANG C,BIRNBAUM L,et al.Definition mo-deling:Learning to define word embeddings in natural language[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [25]KENTON J D M-W C,TOUTANOVA L K.BERT:Pre-trai-ning of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT.2019:4171-4186. [26]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP).2014:1532-1543. [27]LOSHCHILOV I,HUTTER F.Decoupled Weight Decay Regularization[C]//International Conference on Learning Representations.2017 [28]BROWN T,MANN B,RYDER N,et al.Language models are few-shot learners [J].Neural Information Processing Systems,2020,33:1877-1901. [29]ZENG A,LIU X,DU Z,et al.Glm-130b:An open bilingual pre-trained model [J].arXiv:2210.02414,2022. |
|