计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700196-6.doi: 10.11896/jsjkx.230700196
朱俞豪1, 张淞钊1, 张永1,2
ZHU Yuhao1, ZHANG Songzhao1, ZHANG Yong1,2
摘要: 故障诊断对于保障大型机械设备安全稳定运行具有十分重要的意义,但获得的数据存在严重标签缺失或缺少的问题,且不同工况下的数据特征分布显著不同。传统机器学习或微调的方法存在特征提取模式单一、视角固定的局限性,使得同类不同域的特征难以对齐。针对以上问题,文中提出了一种基于域对抗统计特性增强的跨域故障诊断方法DASEM(Domain-Adversarial Statistical Enhancement Model)。该方法采用直推式深度迁移学习技术,在域对抗框架下增强全局统计特性的表示,并与局部结构模式融合,构建双路径特征提取器。同时,利用域标签和数据结构之间的平衡关系来描述域对抗的表现形式,并通过类标签输出故障诊断结果。在西储大学轴承数据集和江南大学轴承数据集上的实验结果显示,DASEM在各个跨域任务上的平均精度分别达到了94.90%和93.15%,证明了该方法的有效性。
中图分类号:
[1]PEI S C,YEH M H,LUO T L.Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform[J].IEEE Transactions on Signal Processing,1999,47(10):2883-2888. [2]KUMAR R,VERMA P K.Signal Space Estimation:Application to Subspace Spectrum Analysis[C]//Proceedings of the Am-bient Communications and Computer Systems.Springer,2018. [3]PALUPI I R,RAHARJO W.The utilization of signal analysis by using short time Fourier transform[C]//Proceedings of the RSF Conference Series:Engineering and Technology.2021. [4]PENG Z,PETER W T,CHU F.A comparison study of im-proved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005,19(5):974-988. [5]OSADCHIY A,KAMENEV A,SAHAROV V,et al.Signal processing algorithm based on discrete wavelet transform[J].Designs,2021,5(3):41. [6]ZAMAN S,ISLAM R.Classification of FNIRS using Wigner-ville distribution and CNN[J].International Journal of Image,Graphics and Signal Processing,2021,13(5):1-13. [7]LU N,YIN T.Transferable common feature space mining for fault diagnosis with imbalanced data[J].Mechanical Systems and Signal Processing,2021,156:107645. [8]XIAO Y,WANG J,HE Z,et al.Deep transfer learning with metric structure for fault diagnosis[J].Knowledge-Based Systems,2022,256:109826. [9]GOLDT S,MÉZARD M,KRZAKALA F,et al.Modeling the influence of data structure on learning in neural networks:The hidden manifold model[J].Physical Review X,2020,10(4):041044. [10]ZHENG H,YANG Y,YIN J,et al.Deep domain generalization combining a priori diagnosis knowledge toward cross-domain fault diagnosis of rolling bearing[J].IEEE Transactions on Instrumentation and Measurement,2020,70:3501311. [11]ZHANG B,LI W,LI X L,et al.Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks[J].IEEE Access,2018,6:66367-66384. [12]SHAO S,MCALEER S,YAN R,et al.Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics,2018,15(4):2446-2455. [13]CAO P,ZHANG S,TANG J.Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J].IEEE Access,2018,6:26241-26253. [14]JIANG G,HE H,YAN J,et al.Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J].IEEE Transactions on Industrial Electronics,2018,66(4):3196-3207. [15]ZHU L,JI D,ZHU S,et al.Learning statistical texture for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021. [16]WEN L,LI X,GAO L.A transfer convolutional neural network for fault diagnosis based on ResNet-50[J].Neural Computing and Applications,2020,32:6111-6124. [17]SHI J,PENG D,PENG Z,et al.Planetary gearbox fault diagno-sis using bidirectional-convolutional LSTM networks[J].Mechanical Systems and Signal Processing,2022,162:107996. [18]LI T,ZHAO Z,SUN C,et al.Domain adversarial graph convolutional network for fault diagnosis under variable working conditions[J].IEEE Transactions on Instrumentation and Measurement,2021,70:3515010. [19]LI X,ZHANG Z,GAO L,et al.A new semi-supervised faultdiagnosis method via deep CORAL and transfer componentana-lysis[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2021,6(3):690-699. |
|