计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700226-5.doi: 10.11896/jsjkx.230700226
白宇, 王新哲
BAI Yu, WANG Xinzhe
摘要: 专利术语间的上下位关系是一种重要的语义关系,专利文本中术语间的上下位关系识别在专利检索、查询扩展、知识图谱构建等多个领域发挥着重要作用。然而,专利文本领域的多样性、语言表述的复杂性使得术语间的上下位关系识别仍然面临许多挑战。文中提出一种融合提示学习和注意力机制的术语上下位关系识别方法,该方法基于远程监督框架,将术语之间的最短依存路径作为辅助特征融入提示模板,使用图神经网络将术语间的共现信息融入提示学习和注意力机制联合训练过程。在专利文本测试数据集上的实验结果表明,所提方法的AUC值、F1值达到94.94%和89.33%,相较于PARE模型分别提升了3.82%和3.17%。该方法有效地去除了使用远程监督方法标注的数据集的噪声,避免了掩码语言模型的训练目标和下游任务的不匹配问题,充分利用了预训练语言模型中存在的语言知识信息。
中图分类号:
[1]CHEN Y,HUANG Y Y,FANG J G.Paten Infomation Collection and Analysis[M].Beijing:Tsinghua University Press,2006. [2]MILLER G A.WordNet:A lexical database for English[J].Communications of the ACM,1995,38(11):39-41. [3]ZHANG S J,CHEN J X,WU X Y.A Novel Distant supervision Relation Extraction Approach Based on Sentence Bag Attention[J].Computer Application and Software,2022,39(8):193-203. [4]MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP.2009:2-7. [5]ZENG D,LIU K,CHEN Y,et al.Distant Supervision for Rela-tion Extraction via Piecewise Convolutional Neural Networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1753-1762. [6]JIANG X T,WANG Q,LI P,et al.Relation Extraction withMulti-instance Multi-label Convolutional Neural Networks[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.2016:1471-1480. [7]LIN Y K,SHEN S Q,LIU Z Y,et al.Neural Relation Extraction with Selective Attention over Instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2016:2124-2133. [8]QIN P D,XU W R,WANG W Y.DSGAN:Generative Adversarial Training for Distant Supervision Relation Extraction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2018:496-505. [9]YUAN Y,LIU L,TANG S,et al.Cross-Relation Cross-Bag Attention for Distantly-Supervised Relation Extraction[C]/Proceedings of the Conference on Artificial Intelligence.Association for the Advancement of Artificial Intelligence(AAAI).2019. [10]CHEN T,SHI H Z,TANG S L,et al.CIL:Contrastive instance learning framework for distantly supervised relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:6191-6200. [11]LI D,ZHANG T,HU N,et al.HiCLRE:A Hierarchical Con-trastive Learning Framework for Distantly Supervised Relation Extraction[C]//Proceedings of the Conference on the Association for Computational Linguistics.2022:2567-2578. [12]RATHORE V,BADOLA K,SINGLA P,et al.PARE:A Simple and Strong Baseline for Monolingual and Multilingual Distantly Supervised Relation Extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:340-354. |
|