计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 240200058-6.doi: 10.11896/jsjkx.240200058

• 图像处理&多媒体技术 • 上一篇    下一篇

基于改进Deeplabv3+算法的滚珠丝杠驱动表面点蚀缺陷检测

郎朗1, 陈晓琴1, 刘莎2, 周强3   

  1. 1 重庆三峡职业学院智能制造学院 重庆 404155
    2 电子科技大学无线通信国家重点实验室 成都 611731
    3 重庆邮电大学计算机科学与技术学院 重庆 400065
  • 发布日期:2024-06-06
  • 通讯作者: 郎朗(2008190232@cqsxzy.edu.cn)
  • 基金资助:
    重庆市教育委员会科技研究项目(KJQN202103509);重庆市教学改革研究项目(GZ223108,GZ223113)

Detection of Pitting Defects on the Surface of Ball Screw Drive Based on Improved Deeplabv3+ Algorithm

LANG Lang1, CHEN Xiaoqin1, LIU Sha2, ZHOU Qiang3   

  1. 1 School of Intelligent Manufacturing,Chongqing Three Gorges Vocational College,Chongqing 404155,China
    2 The National Key Laboratory of Wireless Communications(NKLWC),University of Electronic Science and Technology,Chengdu 611731,China
    3 School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Published:2024-06-06
  • About author:LANG Lang,born in 1983,postgra-duate,associate professor.His main research interests include machine lear-ning,image processing,and anomaly detection.
  • Supported by:
    Science and Technology Research Project of Chongqing Education Commission(KJQN202103509) and Chongqing Teaching Reform Research Project(GZ223108,GZ223113).

摘要: 针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网络中融合特征金字塔网络FPN,能够加强多尺度信息的提取,从而增强了对缺陷目标的精确定位。最后,本研究在Deeplabv3+网络的ASPP模块之后引入了Coordinate Attention机制,能够增强模型对图像中空间和维度的关注,有效地捕获了图像中的长距离空间依赖关系。实验结果表明,与原始的Deeplabv3+相比,所提算法在平均交并比MIoU指标上提高了4.38%,准确率Accuracy提高了5.52%,F1-score提高了2.74%。同时,与其他经典的语义分割算法相比,所提算法也展现出了一定的优越性。

关键词: 滚珠丝杠驱动, 缺陷检测, Deeplabv3+, 多尺度特征, 注意力机制

Abstract: Aiming at the problems of complex background environments,small pitting defect targets,and difficulty in detection on the surface of ball screw drives,an improved Deeplabv3+ algorithm for segmenting surface defects of ball screw drives is proposed.This algorithm adopts Re2Net-50 to replace the backbone network of Deeplabv3+,significantly enhances the ability to recognize small-sized defect targets.Additionally,by integrating feature pyramid networks(FPN) into the backbone network,the algorithm effectively extracts multi-scale information,thereby improving the precise localization of defect targets.Finally,the coordinate attention mechanism is introduced after the ASPP module of the Deeplabv3+ network,enhancing the model’s focus on spatial dimensions within the image and effectively capturing long-range spatial dependencies.Experimental results demonstrate that,compared to the original Deeplabv3+,the proposed algorithm shows a 4.38% improvement in the mean intersection over union(MIoU) metric,a 5.52% increase in accuracy,and a 2.74% rise in F1-score.Furthermore,when compared with other classic semantic segmentation algorithms,the proposedalgorithm also exhibits certain superiority.

Key words: Ball screw drive, Defect detection, Deeplabv3+, Multi-scale features, Attention mechanism

中图分类号: 

  • TP391
[1]LEISCHER F J,ROOS B A,CHOPP S M,et al.Lifecycle-oriented component selection for machine tools based onmultibody simulation and component life prediction[J].Journal of Manufacturing Science and Technology,2009,1(3):179-184.
[2]SHELHAMER E,LONG J,DARRELL T.Fully convolutionalnetworks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[3]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention.Munich,Germany,2015:234-241.
[4]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890.
[5]PENG L,ZHANG H.U-net for Pavement Crack Detection[J].Computer Science,2021,48(11A):616-619.
[6]LUO D L,CAI Y X,YANG Z H,et al.Survey on industrial defect detection with deep learning[J].Science in China(Information Sciences),2022,52(6):1002-1038.
[7]SCHLAGENHAUF T,LANDWEHR M.Industrial machinetool component surface defect dataset[J].Data in Brief,2021,39:107643.
[8]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818.
[9]GAO S H,CHENG M M,ZHAO K,et al.Res2Net:A NewMulti-Scale Backbone Architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662.
[10]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125.
[11]HOU Q,ZHOU D,FENG J.Coordinate Attention for Efficient Mobile Network Design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13708-13717.
[12]PENG C,ZHANG K,MA Y,et al.Cross fusion net:A fast semantic segmentation network for small-scale semantic information capturing in aerial scenes[J].IEEE Transactions on Geo-science and Remote Sensing,2021,60:1-13.
[13]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[14]XIE E,WANG W,YU Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090.
[15]JIE H,LI S,GANG S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,8(42):2011-2023.
[16]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.2018:3-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!