计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800032-7.doi: 10.11896/jsjkx.230800032

• 信息安全 • 上一篇    下一篇

无人机辅助边缘计算安全通信能力最大化方案

薛建彬, 豆俊, 王涛, 马玉玲   

  1. 兰州理工大学计算机与通信学院 兰州 730050
  • 发布日期:2024-06-06
  • 通讯作者: 豆俊(1964513763@qq.com)
  • 作者简介:(volvoxuejb@126.com)
  • 基金资助:
    甘肃省科技计划(23YFGA0062);甘肃省创新基金(2022A-215)

Scheme for Maximizing Secure Communication Capacity in UAV-assisted Edge Computing Networks

XUE Jianbin, DOU Jun, WANG Tao, MA Yuling   

  1. School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China
  • Published:2024-06-06
  • About author:XUE Jianbin,born in 1973,Ph.D,professor.His main research interests include future mobile communication,communication network and system security,wireless network edge intelligence computing,IOT and ubiquitous heterogeneous networks.
    DOU Jun,born in 1999,postgraduate.Her main research interest is secure communication for drones.
  • Supported by:
    Gansu Science and Technology Program(23YFGA0062)and Innovation Fund of Gansu Province(2022A-215).

摘要: 针对无人机辅助移动边缘计算系统下用户信息容易泄露的问题,设计了一种基于非正交多址接入技术(Non-orthogonal Multiple Access,NOMA)的无人机辅助边缘计算系统的安全通信方案。在保证每个地面用户的最小安全计算要求下,通过联合优化信道系数、发射功率、中央处理单元计算频率、本地计算和无人机轨迹来最大化系统的平均安全计算能力。由于窃听者位置的不确定性、多变量的耦合以及问题的非凸性,利用逐次凸逼近和块坐标下降方法来解决该问题。仿真结果表明,与基准方案相比,所提方案在系统安全计算性能方面优于基准方案。

关键词: 移动边缘计算, 非正交多址, 无人机, 物理层安全, 通信安全

Abstract: Aiming at the problem that user information is easy to be leaked in UAV-assisted mobile edge computing system,based on non-orthogonal multiple access(NOMA) technology,a secure communication scheme for UAV-assisted mobile edge computing system is proposed.While ensuring the minimum secure computation requirement for each ground user,the average secure computation capability of the system is maximized by jointly optimizing the channel coefficients,the transmit power,the computation frequency of the central processing unit,the local computation and the UAV trajectory.Due to the uncertainty of the eavesdropper location,the coupling of multiple variables and the non-convexity of the problem,successive convex approximation and block coordinate descent method are used to solve the problem.Simulation results show that compared with the benchmark scheme,the proposed scheme outperforms the benchmark scheme in terms of system secure computation performance.

Key words: Mobile edge computing, Non-orthogonal multiple access, UAV, Physical layer security, Communications Security

中图分类号: 

  • TN929.5
[1]HUANG H L,SAVKIN A.A Method for Optimized Deploy-ment of Unmanned Aerial Vehicles for Maximum Coverage and MinimumInterferencein Cellular Networks[J].IEEE Transactions on Industrial Informatics,2019,15(5):2638-2647.
[2]DU Y Y,KUN W,ZHANG K Z.Joint Resources and Workflow Scheduling in UAV-Enabled Wirelessly-Powered MEC for IoT Systems[J].IEEE Transactions on Vehicular Technology,2019,68(10):10187-10200.
[3]HUANG F,CHEN J,WANG H C,et al.UAV-Assisted SWIPTin Internet of Things With Power Splitting:Trajectory Design and Power Allocation[J].IEEE Access,2019,7:68260-68270.
[4]ZHAN C,HU H,SUI X F,et al.Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System[J].IEEE Internet of Journal,2020,7(8):7808-7822.
[5]ZHOU F H,WU Y P,HU R,et al.Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing Systems[J].IEEE Journal on Selected Areas in Communications,2018,36(9):1927-1941.
[6]HU Q Y,CAI Y L,YU G D,et al.Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems[J].IEEE Internet of Things Journal,2019,6(2):1879-1892.
[7]ZHANG T K,XU Y,JONATHAN L,et al.Joint Computationand Communication Design for UAV-Assisted Mobile Edge Computing in IoT[J].IEEE Transactions on Industrial Informatics,2020,16(8):5505-5516.
[8]YU Z,GONG Y M,GONG S M,et al.Joint Task Offloading and Resource Allocation in UAV-Enabled Mobile Edge Computing[J].IEEE Internet of Things Journal,2020,7(4):3147-3159.
[9]CUI F Y,CAI Y L,QIN Z J,et al.Multiple Access for Mobile-UAV Enabled Networks:Joint Trajectory Design and Resource Allocation[J].IEEE Transactions on Communications,2019,67(7):4980-4994.
[10]NA Z Y,LIU Y,SHI J C,et al.UAV-Supported Clustered NOMA for 6G-Enabled Internet of Things:Trajectory Planning and Resource Allocation[J].IEEE Internet of Things Journal,2021,8(20):15041-15048.
[11]LI S L,LI B G,ZHAO W.Joint Optimization of Caching and Computation in Multi-Server NOMA-MEC System via Reinforcement Learning[J].IEEE Access,2020,8:112762-112771.
[12]WU Y,NI K J,ZHANG C,et al.NOMA-Assisted Multi-Access Mobile Edge Computing:A Joint Optimization of Computation Offloading and Time Allocation[J].IEEE Transactions on Vehicular Technology,2018,67(12):12244-12258.
[13]ZHANG X C,ZHANG J,XIONG J,et al.Energy-EfficientMulti-UAV-Enabled Multiaccess Edge Computing Incorporating NOMA[J].IEEE Internet of Things Journal,2020,7(6):5613-5627.
[14]CHEN X Y,YANG Z T,ZHAO N,et al.Secure Transmission via Power Allocation in NOMA-UAV Networks With Circular Trajectory[J].IEEE Transactions on Vehicular Technology,2020,69(9):10033-10045.
[15]XU Y,ZHANG T K,YANG D C,et al.Joint Resource and Trajectory Optimization for Security in UAV-Assisted MEC Systems[J].IEEE Transactions on Communications,2021,69(1):573-588.
[16]SUN X L,YANG W W,CAI Y M.Secure Communication inNOMA-Assisted Millimeter-Wave SWIPT UAV Networks[J].IEEE Internet of Things Journal,2020,7(3):1884-1897.
[17]HU G J,CAI Y M,CAI Y L,et al.Joint Optimization of Position and Jamming Power for UAV-Aided Proactive Eavesdropping Over Multiple Suspicious Communication Links[J].IEEE Wireless Communications Letters,2020,9(12):2093-2097.
[18]HUANG H L,SAVKIN A,WEI N W.Navigation of a UAV Team for Collaborative Eavesdropping on Multiple Ground Transmitters[J].IEEE Transactions on vehicular Technology,2021,70(10):10450-10460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!