计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 174-180.doi: 10.11896/jsjkx.230800083
张雪1, 田岚1, 曾鸣1, 刘俊晖1, 宗绍国2
ZHANG Xue1, TIAN Lan1, ZENG Ming1, LIU Junhui 1, ZONG Shaoguo2
摘要: 心血管疾病对人类生命健康安全的威胁日益严重,通过心电信号可进行相关疾病的诊断分类。现有的心电分类算法大多采用单任务学习模型,无法综合利用多个任务中的互补特征,而多任务学习模型可同时学习多个相关任务,共享相关任务特征,有助于提高多任务的分类表现。结合深度学习和多任务学习两种方法,提出了一种基于损失优化的心电信号多任务分类算法,将心电信号的多分类任务分解为多个二分类任务,从任务梯度的幅值和方向两方面进行损失优化,避免手动设置任务损失权重以及任务损失相互抵消而产生的负迁移,从而提升心电信号多分类任务的性能。在PTB-XL数据库上将心电信号23类分类任务分解为23个二分类任务来评估所提出的算法。实验结果表明,所提算法的宏观曲线下平均面积(AUC)达到0.950,准确率达到96.50%,基于标签的宏观F1分数达到0.583,基于样本的F1分数达到0.777。与单任务学习算法相比,所提算法在心电信号的多分类方面表现出良好的性能。
中图分类号:
[1]BENJAMIN E J,VIRANI S S,CALLAWAY C W,et al.Heart Disease and Stroke Statistics-2018 Update:A Report From the American Heart Association[J].Circulation,2018,137(12):E67-E492. [2]LUZ E J D,SCHWARTZ W R,CAMARA-CHAVEZ G,et al.ECG-based heartbeat classification for arrhythmia detection:A survey[J].Computer Methods and Programs in Biomedicine,2016,127:144-164. [3]BERKAYA S K,UYSAL A K,GUNAL E S,et al.A survey on ECG analysis[J].Biomedical Signal Processing and Control,2018,43:216-235. [4]ZHAO R X,XU P J,LIU Y.ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network[J].Computer Science,2022,49(5):186-193. [5]HANNUN A Y,RAJPURKAR P,HAGPANAHI M,et al.Car-diologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J].Nature Medicine,2019,25(1):65-69. [6]AHMED A A,ALI W,ABDULLAH T A A,et al.Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model[J].Mathematics,2023,11,562:1-16. [7]ACHARYA U R,OH S L,HAGIWARA Y,et al.A deep con-volutional neural network model to classify heartbeats[J].Computers in Biology and Medicine,2017,89:389-396. [8]YILDIRIM O,PLAWIA P,TAN R S,et al.Arrhythmia detection using deep convolutional neural network with long duration ECG signals[J].Computers in Biology and Medicine,2018,102:411-420. [9]ULLAH H,HEYAT M,AKHTAR F,et al.An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal[J].Diagnostics,2023,13(1):1-20. [10]CARUANA R.Multitask learning[J].Machine Learning,1997,28(1):41-75. [11]ZHANG Y,YANG Q.An overview of multi-task learning[J].National Science Review,2018,5(1):30-43. [12]SHAHI M,OO E,AHMED B,et al.Adversarial Multi-TaskLearning for Robust End-to-End ECG-based Heartbeat Classification[C]//Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Montreal,Canada,2020:341-344. [13]ZHANG Y,YANG Q.A Survey on Multi-Task Learning[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(12):1-20. [14]HUANG Z C,LI W,XIA X G,et al.A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement Detector for Object Detection in Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-20. [15]LU G Q,ZHAO X S,YIN J,et al.Multi-task learning using va-riational auto-encoder for sentiment classification[J].Pattern Recognition Letters,2020,132:115-122. [16]LU G Q,GAN J Z,YIN J,et al.Multi-task learning using a hybrid representation for text classification[J].Neural Computing and Applications,2020,32(11):6467-6480. [17]BANIAT L H,PARK S,PARK S B.A Neural Machine Translation Model for Arabic Dialects That Utilizes Multitask Lear-ning(MTL)[J].Computational Intelligence and Neuroscience,2018,2018:1-11. [18]JI J L,CHEN X H,LUO C Q,et al.A Deep Multi-task Learning Approach for ECG Data Analysis[C]//Proceedings of the 2018 IEEE EMBS International Conference on Biomedical and Health Informatics.Las Vegas,USA,2018:124-127. [19]LIU Y,LI Q C,WANG K Q,et al.Automatic Multi-Label ECG Classification with Category Imbalance and Cost-Sensitive Thresholding[J].Biosensors-Basel,2021,11(11):1-17. [20]LIU J H,ZENG M,SHAN K,et al.Loss Optimization Based Algorithm for Multi-classification of ECG Signal[C]//ISAIMS 2022:2022 3rd International Symposium on Artificial Intelligence for Medicine Sciences.2022:537-541. [21]UBEYLI E D.ECG beats classification using multiclass support vector machines with error correcting output codes[J].Digital Signal Processing,2007,17(3):675-684. [22]OBERMEYE Z,EMANUEL E J.Predicting the Future-Big Data,Machine Learning,and Clinical Medicine[J].New England Journal of Medicine,2016,375(13):1216-1219. [23]GUO M,HAQUE A,HUANG D A,et al.Dynamic Task Prioritization for Multitask Learning[C]//Proceedings of the 15th European Conference on Computer Vision.2018:282-299. [24]YU T H,KUMAR S,GUPT A,et al.Gradient surgery formulti-task learning[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.2020:1-27. [25]WAGNER P,STRODTHOFF N,BOUSSELJO R-D,et al.PTB-XL,a large publicly available electrocardiography dataset[J].Scientific Data,2020,7(1):1-15. [26]STRODTHOFF N,WAGNER P,et al.Deep Learning for ECG Analysis:Benchmarks and Insights from PTB-XL[J].IEEE Journal Biomedical and Health Informatics,2021,25(5):1519-1528. [27]LOSHCHILO I,HUTTER F.Fixing Weight Decay Regularization in ADAM[C]//Proceedings of the 2018 International Conference on Learning Representations.2018:1-10. [28]CHEN Z,BADRINARAYANA V,LEE C Y,et al.GradNorm:Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks[C]//Proceedings of the 35th International Conference on Machine Learning.Stockholm,Sweden,2018:1-27. [29]LIU S K,JOHNS E,DAVISON A J.End-To-End Multi-Task Learning with Attention[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,USA,2019:1871-1880. [30]CENG Q C,LIU H,GAO T L,et al.An ECG Classification Method Based on Multi-Task Learning and CoT Attention Mechanism[J].Healthcare,2023,11(7):1-13. |
|