计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 112-117.doi: 10.11896/jsjkx.201000089

• 数据库&大数据&数据科学 • 上一篇    下一篇

面向出租车空载时间预测的多任务时空图卷积网络

宋龙泽, 万怀宇, 郭晟楠, 林友芳   

  1. 北京交通大学计算机科学与技术学院 北京100044
    交通数据分析与挖掘北京重点实验室 北京100044
  • 收稿日期:2020-10-17 修回日期:2020-12-10 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 万怀宇(hywan@bjtu.edu.cn)
  • 基金资助:
    教育部-中国移动科研基金(MCM20180202)

Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction

SONG Long-ze, WAN Huai-yu, GUO Sheng-nan, LIN You-fang   

  1. School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,ChinaBeijing Key Lab of Traffic Data Analysis and Mining,Beijing 100044,China
  • Received:2020-10-17 Revised:2020-12-10 Online:2021-07-15 Published:2021-07-02
  • About author:SONG Long-ze,born in 1996,postgra-duate.His main research interests include spatial-temporal data mining and so on.(songlongze@bjtu.edu.cn)
    WAN Huai-yu,born in 1981,Ph.D,associate professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include social network mining,text mining,user behavior analysis and spatial-temporal data mining.
  • Supported by:
    Science Foundation of China Mobile-Ministry of Education(MCM20180202).

摘要: 出租车空载时间严重影响交通资源的利用效率和司机的收益。准确的出租车空载时间预测可以有效地指导司机进行合理的路径规划,辅助打车平台进行高效的资源调度。然而,在实际场景中,城市不同区域的空载时间受到区域车流量、客流量以及历史空载时长等多方面因素的影响。为解决该问题,提出一种基于多任务框架的时空图卷积网络(MSTGCN)模型。MSTGCN采用一种新颖的时空图卷积结构,全面建模上述影响空载时间的各种时、空相关性因素。使用多任务学习框架从不同视角学习数据的特征表示,并提出一种多任务注意力融合机制,通过对辅助任务信息的筛选来提升主任务的信息获取能力和预测性能。将所提模型在两个公开的滴滴数据集上进行了充分的实验,其取得了优于其他方法的预测效果。

关键词: 出租车空载时长, 多任务学习, 时空数据预测, 图卷积网络, 注意力机制

Abstract: The taxi idle time seriously affects the utilization efficiency of transportation resources and the driver’s income.Accurate taxi idle time prediction can effectively guide drivers to make reasonable path planning,and assist taxi platforms for efficient resource scheduling.However,in actual scenarios,the idle time in different areas of the city is affected by various factors such as regional traffic,passenger flow,and historical idle time.A spatial-temporal graph convolution network (MSTGCN) model based on multi-task framework is proposed to solve this problem.MSTGCN adopts a novel convolutional structure of spatial-temporal graph to comprehensively model the various spatial and temporal correlation factors that affect the idle time.A multi-task attention fusion mechanism is also proposed to improve the information acquisition ability and prediction performance of each task.Extensive experiments are carried out on two public data sets provided by Didi Chuxing GAIA Initiative,and the prediction results of the proposed model are better than that of other methods.

Key words: Attention mechanism, Graph convolutional network, Multi-task learning, Spatial-temporal data prediction, Taxi idle time

中图分类号: 

  • TP183
[1]LIPPI M,BERTINI F P.Short-Term Traffic Flow Forecasting:An Experimental Comparison of Time-Series Analysis and Supervised Learning[J].Transactions on Intelligent Transportation Systems,2013,14(2):871-882.
[2]WANG D,YANG Y,NING S.Deepstcl:A deep spatio-temporal convlstm for travel demand prediction[C]//2018 International Joint Conference on Neural Networks (IJCNN).IEEE,2018:1-8.
[3]LECUN Y,BENGIO Y,HINTON G.Deep Learning[J].Nature,2015,521(7553):436-444.
[4]ZHANG J,ZHENG Y.Deep Spatio-Temporal Residual Net-works for Citywide Crowd Flows Prediction[C]//AAAI Conference on Artificial Intelligence.2017:1655-1661.
[5]YAO H X,WU F,KE J T,et al.Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction[J].arXiv:1802.08714,2018.
[6]XING S J,CHEN Z R,WANG H,et al.Convolutional LSTM Network:A Machine Learning Approach for Precipitation Nowcasting[J].arXiv:1506.04214,2015.
[7]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is All You Need[J].arXiv:1706.03762,2017.
[8]LI Y,FU K,WANG Z,et al.Multi-Task Representation Learning for Travel Time Estimation[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1695-1704.
[9]GUO S,LIN Y,LI S,et al.Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J].Transactions on Intelligent Transportation Systems,2019,20(10):3913-3926.
[10]YAO H X,TANG X F,WEI H,et al.Revisiting Spatial-Temporal Similarity:A Deep Learning Framework for Traffic Prediction[C]//AAAI Conference on Artificial Intelligence.2019:5668-5675.
[11]LI Y G,YU R,SHAHABI C,et al.Diffusion Convolutional Recurrent Neural Network:Data-Driven Traffic Forecasting[J].arXiv:1707.01926,2018.
[12]YU B,YIN H T,ZHU Z X.Spatio-Temporal Graph Convolutional Networks:A Deep Learning Framework for Traffic Forecasting[J].arXiv:1709.04875,2018.
[13]GUO S,LIN Y,FENG N,et al.Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019,33:922-929.
[14]SONG C,LIN Y,GUO S,et al.Spatial-Temporal Synchronous Graph Convolutional Networks:A New Framework for Spatial-Temporal Network Data Forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(1):914-921.
[15]ZHANG K,LIU Z,ZHENG L.Short-Term Prediction of Passenger Demand in Multi-Zone Level:Temporal Convolutional Neural Network with Multi-Task Learning[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(4):1480-1490.
[16]KIPF T N,WELLING M.Semi-Supervised Classification with Graph Convolutional Networks[J].arXiv:1609.02907,2017.
[17]ZHANG J,ZHENG Y,SUN J,et al.Flow prediction in spatio-temporal networks based on multitask deep learning[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(3):468-478.
[18]KENDALL A,GAL Y,CIPOLLA R.Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics[J].arXiv:1705.07115,2018.
[19]CHEN T,GUESTRIN C.XGBoost:A Scalable Tree Boosting System[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:785-794.
[20]WANG Y K,WANG H Y,PAN P J,et al.A survey of data mining on spatial-temporal user behavior data for public safety[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2018,30(1):40-52.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[5] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[6] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[12] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[13] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[14] 孟月波, 穆思蓉, 刘光辉, 徐胜军, 韩九强.
基于向量注意力机制GoogLeNet-GMP的行人重识别方法
Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism
计算机科学, 2022, 49(7): 142-147. https://doi.org/10.11896/jsjkx.210600198
[15] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!