计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 89-95.doi: 10.11896/jsjkx.230900009
毕盛, 翟岩慧, 李德玉
BI Sheng, ZHAI Yanhui, LI Deyu
摘要: 形式概念分析是一种利用概念格进行数据分析的理论,属性约简是概念格约简的主要方式之一。决策蕴涵是形式概念分析在决策情形下的一种知识表示与推理模型。在已有保持决策背景知识信息不变的属性约简研究中,通常以保持概念规则或粒规则来保持决策背景的知识信息。而相比于概念规则与粒规则,决策蕴涵具备更强的知识表示能力。为了进一步缩小数据在属性约简前后对知识信息表示的差异,对保持决策蕴涵不变的属性约简进行了研究。首先,结合决策蕴涵的语义给出了保持决策蕴涵不变的协调集和约简定义,提出了判定协调集和约简的充要条件;接着,通过实例分析了该约简存在的问题,并结合蕴涵理论给出解决方法,从而给出了弱协调集和弱约简的定义;然后,从知识包含的角度分析了弱约简相比于约简的合理性;最后,提出了判定弱协调集和弱约简的充要条件,并结合决策蕴涵规范基给出了能够找到弱约简的方法,丰富了保持知识信息的属性约简研究内容。
中图分类号:
[1]GANTER B,WILLE R.Formal Concept Analysis:Mathematical Foundations[M].Springer Science & Business Media,2012. [2]YAN M Y,LI J H.Knowledge Discovery and Updating under the Evolution of Network Formal Contexts based on Three-Way Decision[J].Information Sciences,2022,601:18-38. [3]YAO Y Y,QI J J,WEI L.Formal Concept Analysis,Rough Set Analysis and Granular Computing based on Three-Way Decisions[J].Journal of Northwest University(Natural Science Edition),2018,48(4):477-487. [4]ZHAI Y H,QI J J,LI D Y,et al.The Structure Theorem ofThree-Way Concept Lattice[J].International Journal of Approximate Reasoning,2022,146:157-173. [5]CHEN X,QI J J,ZHU X M,et al.Unlabelled Text MiningMethods based on Two Extension Models of Concept Lattices[J].International Journal of Machine Learning and Cybernetics,2020,11:475-490. [6]MOTOGNA S,CRISTEA D,ŞOTROPA D,et al.Formal Concept Analysis Model for Static Code Analysis[J].Carpathian Journal of Mathematics,2022,38(1):159-168. [7]ZHI H L,LI J H,LI Y N.Multilevel Conflict Analysis based on Fuzzy Formal Contexts[J].IEEE Transactions on Fuzzy Systems,2022,30(12):5128-5142. [8]LI J H,WEI L,ZHANG Z,et al.Concept Lattice Theory and Method and Their Research Prospect[J].Pattern Recognition and Artificial Intelligence,2020,33(7):619-642. [9]SHI L L,YANG H L.Object Granular Reduction of Fuzzy Formal Contexts[J].Journal of Intelligent & Fuzzy Systems,2018,34(1):633-644. [10]SHAO M W,LI K W.Attribute Reduction in Generalized One-Sided Formal Contexts[J].Information Sciences,2017,378:317-327. [11]WANG Z,WEI L,QI J J,et al.Attribute Reduction of SE-ISI Concept Lattices for Incomplete Contexts[J].Soft Computing,2020,24(20):15143-15158. [12]REN R S,WEI L.The Attribute Reductions of Three-Way Con-cept Lattices[J].Knowledge-Based Systems,2016,99:92-102. [13]LI Z L,MI J S,ZHANG T.An Updated Method of GranularReduct based on Cognitive Operators in Formal Contexts[J].International Journal of Approximate Reasoning,2023,154:72-83. [14]YUE X W,PENG S,QIN K Y.Attribute Reduction Methods of Formal Context based on Object(Attribute) Oriented Concept Lattice[J].Computer Science,2020,47(S1):436-439. [15]ZHAI Y H,LI D Y.Knowledge Structure Preserving Fuzzy Attribute Reduction in Fuzzy Formal Context[J].International Journal of Approximate Reasoning,2019,115:209-220. [16]LI T J,XU Y C,WU W Z,et al.Attribute Reduction of Formal Contexts based on Decision Rules[J].Pattern Recognition and Artificial Intelligence,2017,30(9):769-778. [17]ZHANG X H,MI J S,LI M Z.Attribute Reduction and Rule Fusion in Granular Consistent Formal Decision Contexts[J].CAAI Transactions on Intelligent Systems,2019,14(6):1138-1143. [18]WANG X,PENG Z H,LI J Y,et al.Method of Concept Reduction based on Concept Discernibility Matrix[J].Computer Science,2021,48(1):125-130. [19]WEI L,CAO L,QI J J,et al.Concept Reduction and Characte-ristics in Formal Concept Analysis[J].Scientia Sinica(Informationis),2020,50(12):1817-1833. [20]ZHAI Y H,LI D Y,QU K S.Decision Implications:ALogical Point of View[J].International Journal of Machine Learning and Cybernetics,2014,5(4):509-516. [21]WANG Q,LI D Y,ZHAI Y H,et al.Parameterized Fuzzy Decision Implication[J].Journal of Computer Research and Development,2022,59(9):2066-2074. [22]ZHAI Y H,JIA N,ZHANG S X,et al.Study on DeductionProcess and Inference Methods of Decision Implications[J].International Journal of Machine Learning and Cybernetics,2022,13(7):1959-1979. [23]WU W Z,YEE L,MI J S.Granular Computing and Knowledge Reduction in Formal Contexts[J].IEEE Transactions on Knowledge and Data Engineering,2008,21(10):1461-1474. [24]ZHANG S X,LI D Y,ZHAI Y H,et al.A Comparative Study of Decision Implication,Concept Rule and Granular Rule[J].Information Sciences,2020,508(C):33-49. [25]ZHAI Y H,LI D Y,QU K S.Decision Implication Canonical Basis:ALogical Perspective[J].Journal of Computer and System Sciences,2015,81:208-218. [26]ZHAI Y H,CHEN R J,LI D Y.An Update Method of Decision Implication Canonical Basis on Attribute Granulating[J].Intelligent Automation & Soft Computing,2023,37(2):1833-1851. |
|