计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900018-5.doi: 10.11896/jsjkx.230900018
黄瑞1, 徐计2
HUANG Rui1, XU Ji2
摘要: 文本分类是自然语言处理中一个基本而又重要的任务,近年来,图神经网络被越来越多地应用于文本分类中。然而,使用图神经网络的图表示学习在涉及文本分类的任务中不能很好地满足新词的归纳学习,其一般假设训练和测试数据来自相同的分布,但现实中这个假设经常不成立。为了克服这些问题,文中提出了Invariant-GCN,用于通过GCN进行归纳文本分类。首先为每个文档构建单个图,使用GCN根据其局部结构学习细粒度的单词表示,这可以有效地为新文档中没见过的单词生成嵌入进而将单词节点作为文档嵌入合并;然后提取最大限度地保留不变类内信息的期望子图,使用这些子图进行学习不受分布变化的影响;最后通过图分类方法完成文本分类。在4个基准数据集上与5种分类方法进行了比较,实验结果表明Invariant-GCN具有良好的文本分类效果。
中图分类号:
[1]ROY P K,SINGH J P,BANERJEE S.Deep learning to filterSMS Spam[J].Future Generation Computer Systems,2020,102:524-533. [2]ZHANG L,WANG S,LIU B.Deep learning for sentiment analysis:A survey[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(4):e1253. [3]ZENG Z,HE K,YAN Y,et al.Modeling Discriminative Repre-sentations for Out-of-Domain Detection with SupervisedCon-trastive Learning[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2021:870-878. [4]JOHNSON R,ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:562-570. [5]ZHANG Y,LIU Q,SONG L.Sentence-State LSTM for Text Representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2018:317-327. [6]WAN S,PAN S,YANG J,et al.Contrastive and generativegraph convolutional networks for graph-based semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(11):10049-10057. [7]AHUJA K,CABALLERO E,ZHANG D,et al.Invariance principle meets information bottleneck for out-of-distribution gene-ralization[J].Advances in Neural Information Processing Systems,2021,34:3438-3450. [8]MCCALLUM A,NIGAM K.A comparison of event models fornaive bayes text classification[C]//AAAI-98 Workshop on Learning for Text Categorization.1998:41-48. [9]JOACHIMS T.Text categorization with support vector ma-chines:Learning with many relevant features[C]//European Conference on Machine Learning.Berlin,Springer,1998:137-142. [10]COVER T,HART P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27. [11]KIM Y.Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).Association for Computational Linguistics,2014. [12]LIU P,QIU X,HUANG X.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:2873-2879. [13]WANG P,XU B,XU J,et al.Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J].Neurocomputing,2016,174:806-814. [14]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377. [15]HUANG L,MA D,LI S,et al.Text Level Graph Neural Network for Text Classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:3444-3450. [16]ZHANG Y,YU X,CUI Z,et al.Every Document Owns ItsStructure:Inductive Text Classification via Graph Neural Networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:334-339. [17]LIU X,YOU X,ZHANG X,et al.Tensor graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8409-8416. [18]JOULIN A,GRAVE É,BOJANOWSKI P,et al.Bag of Tricks for Efficient Text Classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:Volume 2,Short Papers.2017:427-431. [19]SHEN D,WANG G,WANG W,et al.Baseline Needs MoreLove:On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Vo-lume 1:Long Papers).Association for Computational Linguistics,2018. |
|