计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000003-6.doi: 10.11896/jsjkx.231000003

• 图像处理&多媒体技术 • 上一篇    下一篇

基于注意力机制的眼底血管图像分割算法

王利彬, 王树梅   

  1. 江苏师范大学计算机科学与技术学院 江苏 徐州 221116
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 王树梅(plum8@163.com)
  • 作者简介:(sumonster05@163.com)

Fundus Vascular Image Segmentation Algorithm Based on Attention Mechanism

WANG Libin, WANG Shumei   

  1. College of Computer Science and Technology,Jiangsu Normal University,Xuzhou,Jiangsu 221116,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:WANG Libin,born in 1998,postgra-duate.His main research interests include image segmentation,digital watermarking.
    WANG Shumei,born in 1972,Ph.D,professor,is a member of CCF(No.C7398M).Her main research interests include digital image processing,digital watermarking,information hiding.etc.

摘要: 为了缩小编码器- 解码器结构存在的语义差距,提出了一种基于注意力机制的医学图像分割算法。首先,使用CBAM注意力模块,通过注意力机制模块增强模型进行医学图像的特征提取;其次,将CBAM模块输出的特征图作为文中所提出的特征细化模块的输入,用于恢复由于下采样所丢失的血管细节信息;最后,使用一种尺度注意力模块,将不同尺度的特征图所具有的特征结合起来形成最终的预测。通过与当下流行的眼底血管分割算法进行对比,所提算法在DRIVE数据集上的mIoU最高提升了2~3个百分点,最接近的也提升了0.4个百分点,证明了所提模型能够有效提升分割精度,对于恢复细微血管像素有着较好的效果。

关键词: 医学图像, 图像分割, U-Net, 注意力机制

Abstract: In order to narrow the semantic gap between the encoder-decoder structure,a medical image segmentation algorithm based on attention mechanism is proposed.Firstly,the CBAM is used to enhance the model for feature extraction of medical images through the attention mechanism module.Secondly,Using the feature map output by the CBAM module as the input of the feature refinement module proposed in this paper,it is used to restore the vascular detail information lost due to downsampling,so as to narrow the semantic gap.Finally,a scale attention module is used to combine the features of feature maps at different scales to form the final prediction.By comparing with the cunrrently popular retinal vessel segmentation algorithm,the proposed algorithm can improve the mIoU by up to 2.3% on the DRIVE dataset,with the closest approach also improving by 0.4%.This de-monstrates that the proposed model can effectively enhance segmentation accuracy and achieve good results in restoring subtle vascular pixels.

Key words: Medical image, Image segmentation, U-Net, Attention mechanism

中图分类号: 

  • TP391.41
[1]FRAZ M M,REMAGNINO P,HOPPE A,et al.Blood vesselsegmentation methodologies in retinal images-a survey[J].Computer Methods and Programs in Biomedicine,2012,108(1):407-433.
[2]CELEBI M E,QUAN W,HWANG S,et al.Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods[J].Skin Research and Technology,2013,19(1):252-258.
[3]HEMANN T,MEINZER H P.Statistical shape models for 3D medical image segmentation:A review[J].Medical Image Analysis,2009,13(4):543-563.
[4]OLIVA D,CUEVAS E,PAJARES G,et al.Multilevel Thresholding Segmentation Based on Harmony Search Optimization[J].Journal of Applied Mathematics,2013,2013:1-12.
[5]ABED S,ALI M H,AI-SHAYEJI M.An adaptive edge detec-tion operator for noisy images based on a total variation approach restoration[J].Computer Systems Science and Engineering,2017,32(1):21-33.
[6] RICCI E,PERFETTI R.Retinal blood vessel segmentationusing line operators and support vector classification[J].IEEE Transactions on Medical Imaging,2007,26(10):1357-1365.
[7]KAUR N,SHARMA M.Brain tumor detection using self-adaptive K-means clustering[C]//Proceedings of the International Conference on Energy,Communication,Data Analytics and Soft Computing.Los Alamitos:IEEE Computer Society Press,2017:1861-1865.
[8] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer,2015:234-241.
[9]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.AttentionU-Net:learning where to look for the pancreas[OL].[2021-06-21].https://arxiv.org/abs/1804.03999.
[10] GU R,WANG G,SONG T,et al.CA-Net:ComprehensiveAttention Convolutional Neural Networks for Explainable Medical Image Segmentation[J].IEEE Transactions on Medical Imaging,2020,40(2):699-711.
[11] CHEN D Q,ZHANG F,HAO P Y,et al.2D Medical Image Segmentation Combining Multi-Scale Channel Attention and Boundary Enhancement[J].Journal of Computer-Aided Design & Computer Graphics,2022,34(11):1742-1752.
[12] HOU X D,LI Z Y,NIU J Y,et al.Retinal Vessel Segmentation Based on Attention Mechanism and Multi-Path U-Net[J]. Journal of Computer-Aided Design & Computer Graphics,2023,35(1):55-65.
[13]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[14] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[15] STAAL J,ABRAMOFF M D,NIEMEIJER M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging,2004,23(4):501-509.
[16]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.UNet++:Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation[J].IEEE Transactions on Medical Imaging,2020,39(6):1856-1867.
[17] ZHANG Z,FU H,DAI H,et al.Et-net:A generic edge-atten-tion guidance network for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019:22nd International Conference,Shenzhen,China,October 13-17,2019,Proceedings,Part I 22.Springer International Publishing,2019:442-450.
[18] GUO C,SZEMENYEI M,YI Y,et al.Sa-unet:Spatial attentionu-net for retinal vessel segmentation[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:1236-1242.
[19] JHA D,SMEDSRUD P H,RIEGLER M A,et al.Resunet++:An advanced architecture for medical image segmentation[C]//2019 IEEE International Symposium on Multimedia(ISM).IEEE,2019:225-2255.
[20] LIU W,YANG H,TIAN T,et al.Full-resolution network and dual-threshold iteration for retinal vessel and coronary angiograph segmentation[J].IEEE Journal of Biomedical and Health Informatics,2022,26(9):4623-4634.
[21] ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent residual convolutional neural network based on u-net(r2u-net)for medical image segmentation[J].arXiv:1802.06955,2018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!