计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 234-241.doi: 10.11896/jsjkx.231100023
张梦赢, 沈海龙
ZHANG Mengying, SHEN Hailong
摘要: 实体关系联合抽取为知识图谱的构建提供了关键的技术支持,而重叠关系问题一直都是联合抽取模型研究的重点。现有的方法大多采用多步骤的建模方法,虽然在解决重叠关系问题上取得了很好的效果,但产生了曝光偏差问题。为同时解决重叠关系和曝光偏差问题,提出了一种基于词对距离嵌入和轴向注意力机制的实体关系联合抽取方法(DE-AA)。首先,构建代表词对关系的表特征,加入词对距离特征信息优化其表示;其次,应用基于行注意力和列注意力的轴向注意力模型去增强表特征,在融合全局特征的同时能够降低计算复杂度;最后,将表特征映射到各关系空间中,生成特定关系下的词对关系表,并使用表格填充法为表中各项分配标签,以三重分类的方式进行三元组的抽取。在公开数据集NYT和WebNLG上评估了所提出的模型,实验结果表明其与其他基线模型相比取得了更好的性能,且在处理重叠关系或多重关系问题上优势显著。
中图分类号:
[1]HOGAN A,BLOMQVIST E,COCHEZ M,et al.Knowledgegraphs[J].ACM Computing Surveys,2021,54(4):1-37. [2]NASAR Z,JAFFRY S W,MALIK M K.Named entity recognition and relation extraction:State-of-the-art[J].ACM Computing Surveys,2021,54(1):1-39. [3]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:221-231. [4]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [5]LI J,SUN A,HAN J,et al.A survey on deep learning for named entity recognition[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(1):50-70. [6]KAMBAR M E Z N,ESMAEILZADEH A,HEIDARI M.Asurvey on deep learning techniques for joint named entities and relation extraction[C]//2022 IEEE World AI IoT Congress(AIIoT).IEEE,2022:218-224. [7]ZHANG X W,WANG X,CHEN Z R,et al.Survey of Supervised Joint Entity Relation Extraction Methods[J].Journal of Frontiers of Computer Science & Technology,2022,16(4):713-733. [8]FU T J,LI P H,MA W Y.Graphrel:Modeling text as relationalgraphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computa-tional Linguistics.2019:1409-1418. [9]YAN Z,ZHANG C,FU J,et al.A partition filter network for joint entity and relation extraction[J].arXiv:2108.12202,2021. [10]WEI Z,SU J,WANG Y,et al.A novel cascade binary taggingframework for relational triple extraction[J].arXiv:1909.03227,2019. [11]YUAN Y,ZHOU X,PAN S,et al.A relation-specific attention network for joint entity and relation extraction[C]//International joint Conference on Artificial Intelligence.2021. [12]WANG Y,YU B,ZHANG Y,et al.TPLinker:Single-stage joint extraction of entities and relations through token pair linking[J].arXiv:2010.13415,2020. [13]REN F,ZHANG L,ZHAO X,et al.A simple but effective bidirectional framework for relational triple extraction[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:824-832. [14]REN F,ZHANG L,YIN S,et al.A Conditional Cascade Model for Relational Triple Extraction[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:3393-3397. [15]GOYAL A,GUPTA V,KUMAR M.Recent named entity re-cognition and classification techniques:a systematic review[J].Computer Science Review,2018,29:21-43. [16]LIU X,CHEN H,XIA W.Overview of named entity recognition[J].Journal of Contemporary Educational Research,2022,6(5):65-68. [17]LI Q,JI H.Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2014:402-412. [18]ZHAO K,XU H,CHENG Y,et al.Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J].Knowledge-Based Systems,2021,219:106888. [19]MIWA M,BANSAL M.End-to-end relation extraction usinglstms on sequences and tree structures[J].arXiv:1601.00770,2016. [20]ZHENG S,WANG F,BAO H,et al.Joint extraction of entities and relations based on a novel tagging scheme[J].arXiv:1706.05075,2017. [21]WANG J,LU W.Two are better than one:Joint entity and relation extraction with table-sequence encoders[J].arXiv:2010.03851,2020. [22]DAI D,XIAO X,LYU Y,et al.Joint extraction of entities andoverlapping relations using position-attentive sequence labeling[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:6300-6308. [23]ZENG X,ZENG D,HE S,et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computa-tional Linguistics(Volume 1:Long Papers).2018:506-514. [24]EBERTS M,ULGES A.Span-based joint entity and relation extraction with transformer pre-training[J].arXiv:1909.07755,2019. [25]ZHENG H,WEN R,CHEN X,et al.PRGC:Potential relation and global correspondence based joint relational triple extraction[J].arXiv:2106.09895,2021. [26]REN F,ZHANG L,YIN S,et al.A novel global feature-oriented relational triple extraction model based on table filling[J].ar-Xiv:2109.06705,2021. [27]HO J,KALCHBRENNER N,WEISSENBORN D,et al.Axial attention in multidimensional transformers[J].arXiv:1912.12180,2019. [28]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [29]SHANG Y M,HUANG H,MAO X.Onerel:Joint entity and relation extraction with one module in one step[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:11285-11293. [30]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [31]RIEDEL S,YAO L,MCCALLUM A.Modeling relations andtheir mentions without labeled text[C]//Machine Learning and Knowledge Discovery in Databases:European Conference,ECML PKDD 2010,Barcelona,Spain,September 20-24,2010,Proceedings,Part III 21.Springer Berlin Heidelberg,2010:148-163. [32]GARDENT C,SHIMORINA A,NARAYAN S,et al.Creatingtraining corpora for nlg micro-planning[C]//55th annual mee-ting of the Association for Computational Linguistics(ACL).2017. [33]YU B,ZHANG Z,SHU X,et al.Joint extraction of entities and relations based on a novel decomposition strategy[J].arXiv:1909.04273,2019. [34]XU B,WANG Q,LYU Y,et al.EmRel:Joint Representation of Entities and Embedded Relations for Multi-triple Extraction[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:659-665. |
|