计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100054-7.doi: 10.11896/jsjkx.231100054
王春东, 雷杰斌
WANG Chundong, LEI Jiebin
摘要: 入侵检测作为一种保护网络免受攻击的安全防御技术,在网络安全领域中扮演着重要的角色。研究人员利用机器学习技术提出了不同的网络入侵检测模型。然而,特征冗余和机器学习参数优化问题仍然是入侵检测系统面临的挑战。现有研究均将二者视为独立问题,分别优化。但机器学习参数与训练数据中的特征密切相关,特征集的改变很可能引起最优机器学习参数的变化。针对这一问题,提出了一种基于改进鸽群算法组合优化的入侵检测方法(ICOPIO)。该方法可以同时实现特征筛选和机器学习参数优化,避免了人为参数设置的干扰,减少了冗余和无关特征的影响,进一步提高了入侵检测模型的性能。此外,还利用Spark对ICOPIO进行并行化处理,提高了ICOPIO的效率。最后,使用NSL-KDD和UNSW-NB15两个入侵检测标准数据集对模型进行了评估,与现有的几种相关方法相比,所提出的模型在TPR、FPR、平均准确率上都取得了最好的结果,且证明了ICOPIO具有良好的可扩展性。
中图分类号:
[1]NASIR M H,KHAN S A,KHAN M M,et al.Swarm intelli-gence inspired intrusion detection systems-a systematic literature review[J].Computer Networks,2022,205:108708. [2]DAMTEW Y G,CHEN H,YUAN Z.Heterogeneous Ensemble Feature Selection for Network Intrusion Detection System[J].International Journal of Computational Intelligence Systems,2023,16(1):9. [3]DAMTEW Y G,CHEN H,YUAN Z.Heterogeneous Ensemble Feature Selection for Network Intrusion Detection System[J].International Journal of Computational Intelligence Systems,2023,16(1):9. [4]ALQARNI A A.Toward support-vector machine-based ant col-ony optimization algorithms for intrusion detection[J].Soft Computing,2023,27(10):6297-6305. [5]PAN J S,TIAN A Q,CHU S C,et al.Improved binary pigeon-inspired optimization and its application for feature selection[J].Applied Intelligence,2021,51(12):8661-8679. [6]KARLUPIA N,ABROL P.Wrapper-based optimized feature selection using nature-inspired algorithms[J].Neural Computing and Applications,2023,35(17):12675-12689. [7]TALITA A S,NATAZA O S,RUSTAM Z.Naïve bayes classifier and particle swarm optimization feature selection method for classifying intrusion detection system dataset[C]//Journal of Physics:Conference Series.IOP Publishing,2021. [8]DAI M.Based on the parallel feature selection and classification methods of network intrusion detection [J].Computer engineering and design,2019,40(3):654-661. [9]ALMASOUDY F H,AL-YASEEN W L,IDREES A K.Differential evolution wrapper feature selection for intrusion detection system[J].Procedia Computer Science,2020,167:1230-1239. [10]HASSAN I H,ABDULLAHI M,ALIYU M M,et al.An im-proved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection[J].Intelligent Systems with Applications,2022,16:200114. [11]STANLEY K O,CLUNE J,LEHMAN J,et al.Designing neural networks through neuroevolution[J].Nature Machine Intelligence,2019,1(1):24-35. [12]DANG J W,TAN L.Improved Drosophila Algorithm to Optimize Weighted Extreme Learning Machine for Intrusion detection [J].Journal of System Simulation,2021,33(2):331-338. [13]SERHAT K.PSO+ GWO:a hybrid particle swarm optimization and Grey Wolf optimization based Algorithm for fine-tuning hyper-parameters of convolutional neural networks for Cardiovascular Disease Detection[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(1):87-97. [14]NIU X,ZHENG Y,FOURNIER-VIGER P,et al.Parallel grid-based density peak clustering of big trajectory data[J].Applied Intelligence,2021:1-16. [15]LOU P,LU G,JIANG X,et al.Cyber intrusion detectionthrough association rule mining on multi-source logs[J].Applied Intelligence,2021,51:4043-4057. [16]CHEN H,LIU D,HAN L,et al.A spark-based distributeddragonfly algorithm for feature selection[C]//2020 15th Inter-national Conference on Computer Science & Education(ICCSE).IEEE,2020:419-423. [17]DUAN H B,YE F.Research Progress of pigeon swarm optimization algorithm [J].Journal of Beijing University of Technology,2017,43(1):1-7. [18]LIANG X W,JIANG A P,WANG G T,et al.Multi-residue signal Recognition Technique of Sealed Relays based on Parameter Optimization Decision Tree Algorithm[J].Journal of Electronic Measurement & Instrument,20,34(1):178-185. [19]HARRIS A,MINTARIA A E,STIAWAN D,et al.Improvingthe anomaly detection by combining pso search methods and j48 algorithm[C]//2020 7th International Conference on Electrical Engineering,Computer Sciences and Informatics(EECSI).IEEE,2020:119-126. |
|