计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 157-165.doi: 10.11896/jsjkx.231100145

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于时空图注意力卷积神经网络的车辆轨迹预测

袁静, 夏英   

  1. 重庆邮电大学计算机科学与技术学院 重庆 400065
  • 收稿日期:2023-11-22 修回日期:2024-02-06 出版日期:2024-12-15 发布日期:2024-12-10
  • 通讯作者: 夏英(xiaying@cqupt.edu.cn)
  • 作者简介:(S210201129@stu.cqupt.edu.cn)
  • 基金资助:
    国家自然科学基金(41971365);重庆市教委重点合作项目(HZ2021008)

Vehicle Trajectory Prediction Based on Spatial-Temporal Graph Attention Convolutional Network

YUAN Jing, XIA Ying   

  1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2023-11-22 Revised:2024-02-06 Online:2024-12-15 Published:2024-12-10
  • About author:YUAN Jing,born in 1997,postgraduate.His main research interests include deep learning and trajectory prediction.
    XIA Ying,born in 1972,Ph.D,professor,Ph.D supervisor,is a senior member of CCF(No.10248S).Her main research interests include spatio-temporal big data and cross-media retrieval.
  • Supported by:
    National Natural Science Foundation of China(41971365) and Chongqing Municipal Education Commission Cooperation Projects(HZ2021008).

摘要: 车辆轨迹预测是交通管理、智能汽车和自动驾驶等领域的一项关键技术。准确预测车辆轨迹,有利于汽车安全行驶。城市交通场景中,车辆轨迹数据的时空特征复杂多变。为充分获取数据中的动态时空相关性,提高轨迹预测精度,同时降低模型复杂度,提出了时空图注意力卷积神经网络模型(Spatial-Temporal Graph Attention Convolutional Network,STGACN)。该模型首先通过轨迹信息嵌入模块对车辆历史轨迹数据进行时空图转换,然后通过时空卷积块及其堆叠完成轨迹数据的时序特征和空间特征的提取与融合,最终由门控递归单元完成编码与解码工作,得到预测轨迹。模型采用由膨胀因果卷积和门控单元组成的门控卷积网络提取时序特征,避免了循环神经网络带来的冗余迭代,使得模型参数更少,轨迹预测推理速度更快;时空卷积块组的时空特征融合工作使模型关注到更丰富的场景特征,提高了预测精度。在真实轨迹数据集Argoverse和NGSIM上进行实验,结果表明STGACN模型与基线模型相比,具有更高的预测精度和效率。

关键词: 车辆轨迹预测, 时空相关性, 时空图, 图卷积网络, 注意力机制

Abstract: Vehicle trajectory prediction is a crucial technology in fields such as traffic management,intelligent-car,and autonomous driving.Accurately predicting vehicle trajectories contributes to safe driving.In urban traffic scenarios,the spatial- temporal features of vehicle trajectory data are complex and variable.To fully capture the dynamic spatial-temporal correlations in the data,enhance trajectory prediction accuracy,and simultaneously reduce model complexity,this paper proposes a spatial- temporal graph attention convolutional network(STGACN).It utilizes a trajectory information embedding module to transform historical vehicle trajectory data into spatial-temporal graphs.Subsequently,it extracts and combines temporal and spatial features of trajectory data through stacked spatial-temporal convolution blocks.Finally,encoding and decoding are performed by gated recurrent units to obtain the predicted trajectory.The model employs a gated convolutional network composed of dilated causal convolutions and gating units to extract temporal features,avoiding the redundant iterations introduced by recurrent neural network.The fusion of spatial- temporal features in the spatial-temporal convolution blocks group enables the model to focus on richer scene features.This results in a model with fewer parameters,faster trajectory prediction inference speed,and improved prediction accuracy.Experiments are conducted on real trajectory datasets,including Argoverse and NGSIM,and the results demonstrate that the proposed STGACN model exhibits higher prediction accuracy and efficiency than the compared baseline models.

Key words: Vehicle trajectory prediction, Spatial-temporal correlation, Spatial-temporal graph, Graph convolutional network, Attention mechanism

中图分类号: 

  • TP391
[1]GAO H B,CHENG B,WANG J Q,et al.Object classificationusing CNN-based fusion of vision and LIDAR in autonomous vehicle environment[J].IEEE Transactions on Industrial Informatics,2018,14(9):4224-4231.
[2]ZHANG M H,DU D H,ZHANG M Z,et al.Spatio-temporaltrajectory data-driven autonomous driving scenario meta-mode-ling approach[J].Journal of Software,2021,32(4):973-987.
[3]HUANG Y J,DU J T,YANG Z Y,et al.A Survey on Trajectory-Prediction Methods for Autonomous Driving[J].IEEE Transactions on Intelligent Vehicles,2022,7(3):652-674.
[4]BRANNSTROM M,ERIK C,JONAS S.Model-based threat assessment for avoiding arbitrary vehicle collisions[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):658-669.
[5]CARVALHO A,GAO Y,LEFEVRE S,et al.Stochastic predictive control of autonomous vehicles in uncertain environments[C]//Proceedings of 12th International Symposium on Advanced Vehicle Control.2014:712-719.
[6]LEFEVRE S,VASQUEZ D,LAUGIER C.A survey on motion prediction and risk assessment for intelligent vehicles[J].Robomech J,2014,1(1):1-14.
[7]GAO H B,CHEN L,ZHANG T,et al.A structure constraint matrix factorization framework for human behavior segmentation[J].IEEE Transactions on Cybernetics,2021,52(12):12978-12988.
[8]DEO N,RANGESH A,TRIVEDI M M.How would surround vehicles move? a unified framework for maneuver classification and motion prediction[J].IEEE Transactions on Intelligent Vehicles,2018,3(2):129-140.
[9]TRAN Q,FIRL J.Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression[C]//2014 IEEE Intelligent Vehicles Sympo-sium Proceedings.IEEE,2014:918-923.
[10]GAO H B,QIN Y H,HU C,et al.An interacting multiple model for trajectory prediction of intelligent vehicles in typical road traffic scenario[J].IEEE Transactions on Neural Networks and Learning Systems,2021,34(9):6468-6479.
[11]GAO H B,SU H,CAI Y F,et al.Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections[J].Science China Information Sciences,2021,64(7):172207.
[12]ZYNER A,WORRALL S,NEBOT E.A recurrent neural network solution for predicting driver intention at unsignalized intersections[J].IEEE Robotics and Automation Letters,2018,3(3):1759-1764.
[13]DEO N,TRIVEDI M M.Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2018:1468-1476.
[14]ZHAO Z Y,FANG H W,JIN Z,et al.GISNet:Graph-Based Information Sharing Network For Vehicle Trajectory Prediction[C]//Proceedings of 2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-7.
[15]LI K,YANG L,ZHAO Y,et al.EGCN-CeDML:A Distributed Machine Learning Framework for Vehicle Driving Behavior Prediction[J].Computer Science,2023,50(9):318-330.
[16]ZHANG L,LI P,CHEN J,et al.Trajectory prediction withgraph-based dual-scale context fusion.[C]//RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2022:11374-11381.
[17]SCHMIDT J,JORDAN J,GRITSCHNEDER F,et al.CRAT-Pred:Vehicle Trajectory Prediction with Crystal Graph Convolutional Neural Networks and Multi-Head Self-Attention[C]//2022 International Conference on Robotics and Automation(ICRA).IEEE,2022:7799-7805.
[18]LI W L,HAN D,SHI X H,et al.Vehicle Trajectory Prediction Based on Spatial-temporal Attention Mechanism[J].China Journal of Highway and Transport,2023,36(1):226-239.
[19]GAO K,LI X,CHEN B,et al.Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment[J].IEEE Transactions on Intelligent Transportation Systems,2023,23(6):6203-6216.
[20]LI X,YING X W,CHUAH M C.GRIP:Graph-based interaction-aware trajectory prediction[C]//Proceedings of 2019 IEEE Intelligent Transportation Systems Conference(ITSC).IEEE,2019:3960-3966.
[21]SHENG Z H,XU Y W,XUE S B,et al.Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(10):17654-17665.
[22]AZADANI M N,BOUKERCHE A.STAG:A novel interaction-aware path prediction method based on Spatio-Temporal Attention Graphs for connected automated vehicles[J].Ad Hoc Networks,2023,138:103021.
[23]YU B,YIN H T,ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence.IJCAI,2018:3634-3640.
[24]GEHRING J,AULI M,GRANGIER D,et al.Convolutional sequence to sequence learning[C]//Proceedings of International Conference on Machine Learning.IMLS,2017:1243-1252.
[25]FENG X C,GUO J,QIN B,et al.Effective deep memory networks for distant supervised relation extraction[C]//Procee-dings of the Twenty-Sixth International Joint Conference on Artificial Intelligence(IJCAI).2017:4002-4008.
[26]CHO K,VAN M B,GULCEHRE C et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//the 2014 Conference on Empirical Methods in Natural Language Processing.ACL,2014:1724-1734.
[27]CHANG M F,LAMBERT J,SANGKLOY P,et al.Argoverse:3d tracking and forecasting with rich maps[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:8748-8757.
[28]COLYAR J,HALKIAS J.Us highway 101 dataset[J].Federal Highway Administration(FHWA),2007,1:27-69.
[29]PARK S H,KIM B D,KANG C M,et al.Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]//2018 IEEE Intelligent Vehicles Symposium(IV).IEEE,2018:1672-1678.
[30]LIANG M,YANG B,HU R,et al.Learning lane graph representations for motion forecasting[C]//European Conference on Computer Vision.Springer,2020:541-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!