计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 269-276.doi: 10.11896/jsjkx.231100146

• 人工智能 • 上一篇    下一篇

平衡参数自适应下基于模体的混合阶网络多智能体一致性

谢光强, 吴烨彬, 李杨   

  1. 广东工业大学计算机学院 广州 510006
  • 收稿日期:2023-11-22 修回日期:2024-04-13 出版日期:2024-12-15 发布日期:2024-12-10
  • 通讯作者: 李杨(liyang@gdut.edu.cn)
  • 作者简介:(xiegq@gdut.edu.cn)
  • 基金资助:
    国家自然科学基金(62006047);广东省重点领域研发计划(2021B0101220004)

Motif Based Hybrid-order Network Consensus for Multi-agent Systems with Trade-off Parameter Adaptation

XIE Guangqiang, WU Yebin, LI Yang   

  1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-11-22 Revised:2024-04-13 Online:2024-12-15 Published:2024-12-10
  • About author:XIE Guangqiang,born in 1979,Ph.D,professor,master supervisor,is a member of CCF(No.17290S).His main research interests include multi-agent systems and data mining.
    LI Yang,born in 1980,Ph.D,professor,master supervisor,is a member of CCF(No.23122M).Her main research intere-sts include differential privacy,multi-agent systems and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62006047) and Guangdong Key Areas R&D Program(2021B0101220004).

摘要: 充分利用多智能体网络结构中的高阶信息可以有效增强多智能体一致性。现有的基于模体加权的多智能体框架(Motif-aware Weighted Multi-agent System,MWMS) 将关注点集中在复杂网络中连接信息的提取,忽略了网络中的碎片信息,导致MWMS在取不同的平衡参数值时收敛效果差异较大。针对上述问题,提出了一种平衡参数自适应下基于模体加权的多智能体系统框架(Alpha-adaptive Motif-aware Weighted Multi-agent System,AMWMS),揭示了多智能体系统在混合阶网络下的平衡参数的调节规律。首先,提出了基于Jaccard相似性的高阶网络碎片化程度量化方法和基于相对距离的低阶网络碎片化程度量化方法,用于对不同网络层碎片信息进行建模;其次,设计了自适应参数生成的混合阶网络(Adaptive Parameter Generation Hybrid-Order Network,APGHNet),APGHNet的平衡参数能够在系统演化过程中自适应变化;最后,给出了平衡参数自适应下基于模体矩阵的多智能体一致性协议。通过仿真实验与MWMS中的一致性协议进行比较,验证了新协议的平衡参数自适应生成方法的有效性,系统最终能够收敛到较少的簇,增强了系统一致性。

关键词: 多智能体系统, 平衡参数自适应, 网络碎片度量, 拓扑优化

Abstract: Making full use of the high-order information in the multi-agent network structure can effectively enforce the multi-agent consensus.The algorithm proposed by motif-aware weighted multi-agent system(MWMS) focuses on the extraction of connection information in the complex network,ignoring the fragment information in the network,resulting in a large difference in the convergence effect of MWMS when taking different balance parameter values.To address the aforementioned issues,this paper proposes an alpha-adaptive motif-aware weighted multi-agent system(AMWMS) to reveal the regulatory patterns of balance parameters for MASs in hybrid-order networks.Firstly,this paper proposes methods for quantifying the degree of high-order network fragmentation based on Jaccard similarity and the degree of low-order network fragmentation based on relative distance,which are used for modeling different layer network fragment information.Secondly,an adaptive parameter generation hybrid-order network(APGHNet) is designed,and its balance parameter can adaptively change during system evolution.Finally,this paper proposes a motif-aware weighted multi-agent consensus protocol with trade-off parameter adaptation.Simulation results show that the balance parameter adaptive method of the new protocol is effective by comparing with the consistency protocol in MWMS,and the system can eventually converge to fewer clusters to enforce the system consensus.

Key words: Multi agent systems, Trade-off parameter adaptation, Network fragmentation quantification, Topology optimization

中图分类号: 

  • TP249
[1]WANG J,HONG Y,WANG J,et al.Cooperative and competitive multi-agent systems:From optimization to games[J].IEEE/CAA Journal of Automatica Sinica,2022,9(5):763-783.
[2]ZHANG S,LIU W,ZHAO N.Research of Consensus in Multi-agent Systems on Complex Network[J].Computer Science,2019,46(4):95-99.
[3]OROOJLOOY A,HAJINEZHAD D.A review of cooperativemulti-agent deep reinforcement learning[J].Applied Intelligence,2023,53(11):13677-13722.
[4]DERAKHSHAN F,YOUSEFI S.A review on the applications of multiagent systems in wireless sensor networks[J].International Journal of Distributed Sensor Networks,2019,15(5):1550147719850767.
[5]HERRERA M,PÉREZ-HERNÁNDEZ M,KUMAR PAR-LIKAD A,et al.Multi-agent systems and complex networks:Review and applications in systems engineering[J].Processes,2020,8(3):312.
[6]OLFATI-SABER R,FAX J A,MURRAY R M.Consensus and cooperation in networked multi-agent systems[J].Proceedings of the IEEE,2007,95(1):215-233.
[7]FEI C,WEI R.On the control of multi-agent systems:A survey[J].Foundations and Trends in Systems and Control,2019,6(4):339-499.
[8]LIN J,MORSE A,ANDERSON B.The multi-agent rendezvous problem-the asynchronous case[C]//43rd IEEE Conference on Decision and Control(CDC).BAHAMAS,2004:1926-1931.
[9]NING B,HAN Q L,ZUO Z.Distributed Optimization of Multiagent Systems With Preserved Network Connectivity[J].IEEE Transactions on Cybernetics,2019,49(11):3980-3990.
[10]XIE G,ZHONG B,LI Y.Distributed Adaptive Multi-agent Rendezvous Control Based on Average Consensus Protocol[J].Computer Science,2024,41(5):242-249.
[11]SHI L,GOU K,XIE D.Convergence analysis of first-order discrete multi-agent systems with cooperative-competitive mechanisms[J].Applied Mathematics and Computation,2021,410:126462.
[12]DEVELER Ü,CIHAN O,AKAR M.Cluster consensus withfirst and higher-order antagonistic interaction dynamics[J].Neurocomputing,2023,529:33-47.
[13]CHEN X,GAO S,ZHANG S,et al.On topology optimization for event-triggered consensus with triggered events reducing and convergence rate improving[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2021,69(3):1223-1227.
[14]LIU J,WU Z,XIN Q,et al.Topology uniformity pinning control for multi-agent flocking[J].Complex & Intelligent Systems,2024,10:2013-2027.
[15]HE C,FENG Z,REN Z.A flocking algorithm for multi-agentsystems with connectivity preservation under hybrid metric-topological interactions[J].Plos one,2018,13(2):e0192987.
[16]SARAFRAZ M S,TAVAZOEI M S.A unified optimization-based framework to adjust consensus convergence rate and optimize the network topology in uncertain multi-agent systems[J].IEEE/CAA Journal of Automatica Sinica,2021,8(9):1539-1548.
[17]XIE G,CHEN J,LI Y.Hybrid-order network consensus for distributed multi-agent systems[J].Journal of Artificial Intelligence Research,2021,70:389-407.
[18]BENSON A R,GLEICH D F,LESKOVEC J.Higher-order organization of complex networks[J].Science,2016,353(6295):163-166.
[19]WU X,WANG C,JIAO P.Hybrid-order Stochastic Block Model[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(5):4470-4477.
[20]LI P,HUANG L,WANG C,et al.Edmot:An edge enhancement approach for motif-aware community detection[C]//Procee-dings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:479-487.
[21]LI P,HUANG L,WANG C,et al.Community detection by motif-aware label propagation[J].ACM Transactions on Know-ledge Discovery from Data(TKDD),2020,14(2):1-19.
[22]YANG Y,DIMAROGONAS D V,HU X.Opinion consensus of modified Hegselmann-Krause models[J].Automatica,2014,50(2):622-627.
[23]MOTSCH S,TADMOR E.Heterophilious dynamics enhancesconsensus[J].SIAM Review,2014,56(4):577-621.
[24]XIE G,XU H,LI Y,et al.Consensus Seeking in Large-Scale Multiagent Systems With Hierarchical Switching-Backbone Topology[J/OL].https://ieeexplore.ieee.org/abstract/document/10173854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!