计算机科学 ›› 2019, Vol. 46 ›› Issue (8): 1-8.doi: 10.11896/j.issn.1002-137X.2019.08.001

• 大数据与数据科学* •    下一篇

多智能体强化学习综述

杜威1, 丁世飞1,2   

  1. (中国矿业大学计算机科学与技术学院 江苏 徐州221116)1
    (中国科学院计算技术研究所智能信息处理重点实验室 北京100190)2
  • 收稿日期:2018-07-06 出版日期:2019-08-15 发布日期:2019-08-15
  • 通讯作者: 丁世飞(1963-),男,博士后,教授,CCF会员,主要研究方向为机器学习与人工智能,E-mail:dingsf@cumt.edu.cn
  • 作者简介:杜威(1994-),男,硕士生,主要研究方向为深度强化学习,E-mail:1394471165@qq.com
  • 基金资助:
    国家自然科学基金(61672522,61379101),国家重点基础研究发展计划(973)(2013CB329502)

Overview on Multi-agent Reinforcement Learning

DU Wei1, DING Shi-fei1,2   

  1. (School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)1
    (Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China)2
  • Received:2018-07-06 Online:2019-08-15 Published:2019-08-15

摘要: 多智能体系统是一种分布式计算技术,可用于解决各种领域的问题,包括机器人系统、分布式决策、交通控制和商业管理等。多智能体强化学习是多智能体系统研究领域中的一个重要分支,它将强化学习技术、博弈论等应用到多智能体系统,使得多个智能体能在更高维且动态的真实场景中通过交互和决策完成更错综复杂的任务。文中综述了多智能体强化学习的最新研究进展与发展动态,首先介绍了多智能体强化学习的基础理论背景,回顾了文献中提出的多智能体强化学习的学习目标和经典算法,其被分别应用于完全合作、完全竞争和更一般(不合作也不竞争)的任务。其次,综述了多智能体强化学习的最新进展,近年来随着深度学习技术的成熟,在越来越多的复杂现实场景任务中,研究人员利用深度学习技术来自动学习海量输入数据的抽象特征,并以此来优化强化学习问题中智能体的决策。近期,研究人员结合深度学习等技术,从可扩展性、智能体意图、奖励机制、环境框架等不同方面对算法进行了改进和创新。最后,对多智能体强化学习的应用前景和发展趋势进行了总结与展望。目前多智能体强化学习在机器人系统、人机博弈、自动驾驶等领域取得了不错的进展,未来将被更广泛地应用于资源管理、交通系统、医疗、金融等各个领域。

关键词: 博弈论, 多智能体强化学习, 多智能体系统, 强化学习, 深度学习

Abstract: Multi-agent system is a distributed computing technology,which can be used to solve problems in various fields,including robot system,distributed decision-making,traffic control and business management.Multi-agent reinforcement learning is an important branch in the field of multi-agent system research.It applies reinforcement learning technology and game theory to multi-agent systems,enabling multiple agents to complete more complicated tasks through interaction and decision-making in higher-dimensional and dynamic real scenes.This paper reviewed the recent research progress and development of multi-agent reinforcement learning.Firstly,the theoretical background of multi-agent reinforcement learning was introduced,and the learning objectives and classical algorithms of multi-agent reinforcement learning proposed in the literature were reviewed,which are respectively applied to complete cooperation,complete competition and more general (neither cooperation nor competition) tasks.Secondly,the latest development of multi-agent reinforcement learning was summarized.With the maturity of deep learning technology in recent years,in more and more complex realistic scene tasks,researchers use deep learning technology to automatically learn abstract features of massive input data,and then use these data to optimize the decision-making of agents in reinforcement lear-ning.Recently,researchers have combined deep learning and other technologies to improve and innovate algorithms in different aspects,such as scalability,agent intent,incentive mechanism,and environmental framework.At the end of this paper,the prospect of the application of multi-agent reinforcement learning were summarized.Multi-agent reinforcement learning has made good progress in the fields of robot system,man-machine game and autonomous driving,and will be applied in the fields of resource management,transportation system,medical treatment and finance in the future

Key words: Deep learning, Game theory, Multi-agent reinforcement learning, Multi-agent systems, Reinforcement learning

中图分类号: 

  • TP181
[1]ZHAO Z H,GAO Y,LUO B,et al.Reinforcement Learning Technology in Multi-Agent System[J].Computer Science,2004,31(3):23-27.(in Chinese) 赵志宏,高阳,骆斌,等.多Agent系统中强化学习的研究现状和发展趋势[J].计算机科学,2004,31(3):23-27.
[2]GAO Y,CHEN S F,LU X.Research on Reinforcement Lear- ning Technology:A Review[J].ACTA AUTOMATICA SINICA,2004,30(1):86-100.(in Chinese) 高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100.
[3]LIU Q,ZHAI J W,ZHANG Z C,et al.A Survey on Deep Reinforcement Learning[J].Chinese Journal of Computers,2018,40(1):1-27.(in Chinese) 刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2018,40(1):1-27.
[4]YANG W C,ZHANG L.Multi-agent reinforcement learning based traffic signal control for integrated urban network:survey of state of art[J].Application Research of Computers,2018,35(6):13-18.(in Chinese) 杨文臣,张轮.多智能体强化学习在城市交通网络信号控制方法中的应用综述[J].计算机应用研究,2018,35(6):13-18.
[5]ZHANG W X,MA L,WANG X D.Reinforcement learning for event-triggered multi-agent systems[J].CAAI Transactions on Intelligent Systems,2017,12(1):82-87.(in Chinese) 张文旭,马磊,王晓东.基于事件驱动的多智能体强化学习研究[J].智能系统学报,2017,12(1):82-87.
[6]XI L,CHEN J F,HUANG Y H,et al.Smart generation control based on multi-agent reinforcement learning with the idea of the time tunnel[J].Scientia Sinica,2018,48(4):441-456.(in Chinese) 席磊,陈建峰,黄悦华,等.基于具有时间隧道思想的多智能体强化学习的智能发电控制方法[J].中国科学:技术科学,2018,48(4):441-456.
[7]LITTMAN M L.Markov games as a framework for multi-agent reinforcement learning[M].New Brunswick:Machine Learning Proceedings,1994:157-163.
[8]ZHAO X Y,DING S F.Research on Deep Reinforcement Lear- ning[J].Computer Science,2018,45(7):1-6.(in Chinese) 赵星宇,丁世飞.深度强化学习研究综述[J].计算机科学,2018,45(7):1-6.
[9]GU S,HOLLY E,LILLICRAP T,et al.Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates[C]∥IEEE International Conference on Robotics and Automation.Singapore:IEEE Press,2017:3389-3396.
[10]FOERSTER J,ASSAEL I,DE FREITAS N,et al.Learning to communicate with deep multi-agent reinforcement learning[C]∥Advances in Neural Information Processing Systems.Spain:NIPS Press,2016:2137-2145.
[11]LOWE R,WU Y,et al.Multi-agent actor-critic for mixed coo- perative-competitive environments[C]∥Advances in Neural Information Processing Systems.Los Angeles:NIPS Press,2017:6379-6390.
[12]LANCTOT M,ZAMBALDI V,GRUSLYS A,et al.A unified game-theoretic approach to multi-agent reinforcement learning[C]∥Advances in Neural Information Processing Systems.Los Angeles:NIPS Press,2017:4190-4203.
[13]LEIBO J,ZAMBALDI V,LANCTOT M,et al.Multi-agent reinforcement learning in sequential social dilemmas[C]∥Procee-dings of the 16th Conference on Autonomous Agents and Multi-agent Systems.Singapore:AAMAS Press,2017:464-473.
[14]SHALEV-SHWARTZ S,SHAMMAH S,SHASHUA A.Safe,multi-agent,reinforcement learning for autonomous driving[J/OL].https://arxiv.org/abs/1610.03295.
[15]JIN J,SONG C,LI H,et al.Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising[J/OL].https://arxiv.org/abs/1802.09756.
[16]XI L,CHEN J,HUANG Y,et al.Smart generation control based on multi-agent reinforcement learning with the idea of the time tunnel[J].Energy,2018,153:977-987.
[17]PEROLAT J,LEIBO J Z,ZAMBALDI V,et al.A multi-agent reinforcement learning model of common-pool resource appropriation[C]∥Advances in Neural Information Processing Systems.Los Angeles:NIPS Press,2017:3643-3652.
[18]SUTTON R.Introduction:The challenge of reinforcement learning [M].Springer,Boston,MA:Reinforcement Learning,1992:1-3.
[19]BUSONIU L,BABUŠKA R,DE SCHUTTER B.Multi-agent reinforcement learning:An overview[J].Innovations in multi-agent systems and applications-1,2010,310:183-221.
[20]WATKINS C,DAYAN P.Q-learning[J].Machine Learning, 1992,8(3/4):279-292.
[21]LITTMAN M.Value-function reinforcement learning in Markov games[J].Cognitive Systems Research,2001,2(1):55-66.
[22]LAUER M,RIEDMILLER M.An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent Systems[C]∥Seventeenth International Conference on Machine Lear-ning.Stanford:Morgan Kaufmann Press,2000:535-542.
[23]GREENWALD A,HALL K,SERRANO R.Correlated Q-lear- ning[C]∥ICML.Washington:ICML Press,2003:242-249.
[24]KONONEN V.Asymmetric multiagent reinforcement learning [C]∥International Conference on Intelligent Agent Technology.Canada:IEEE Press,2003:336-342.
[25]HU J,WELLMAN M.Multiagent reinforcement learning:theoretical framework and an algorithm[C]∥ICML.Wisconsin:ICML Press,1998:242-250.
[26]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing Atari with Deep Reinforcement Learning[C]∥Proceedings of Workshops at the 26th Neural Information Processing Systems 2013.Lake Tahoe,USA:NIPS Press,2013:201-220.
[27]VAN HASSELT H,GUEZ A,SILVER D.Deep Reinforcement Learning with Double Q-Learning[C]∥AAAI.Arizona:AAAI Press,2016:5.
[28]SCHAUL T,QUAN J,ANTONOGLOU I,et al.Prioritized experience replay[C]∥proceedings of the 4th International Conference on Learning Representations.San Juan,Puerto Rico:ICLR Press,2016:322-355.
[29]OSBAND I,VAN ROY B,WEN Z.Generalization and exploration via randomized value functions[J].Proceedings of the 33rd International Conference on International Conference on Machine Learning,2014,48(1):2377-2386.
[30]MUNOS R,STEPLETON T,HARUTYUNYAN A,et al.Safe and efficient off-policy reinforcement learning[C]∥Advances in Neural Information Processing Systems.Spain:NIPS Press,2016:1054-1062.
[31]FRANÇOIS-LAVET V,FONTENEAU R,ERNST D.How to discount deep reinforcement learning:Towards new dynamic strategies[C]∥Proceedings of the Workshops at the Advances in Neural Information Processing Systems.Montreal,Canada:NIPS Press,2015:1107-1160.
[32]LILLICRAP T P,HUNT J J,PRITZEL A,et al.Continuous control with deep reinforcement learning:U.S.Patent Application 15/217,758[P].2017-1-26.
[33]MNIH V,BADIA A P,MIRZA M,et al.Asynchronous methods for deep reinforcement learning[C]∥International Conference on Machine Learning.New York City:ICML press,2016:1928-1937.
[34]SCHULMAN J,WOLSKI F,DHARIWAL P,et al.Proximal policy optimization algorithms[J/OL].https://arxiv.org/abs/1707.06347.
[35]HEESS N,SRIRAM S,LEMMON J,et al.Emergence of locomotion behaviors in rich environments[J/OL].https://arxiv.org/abs/1707.02286.
[36]FOERSTER J,NARDELLI N,FARQUHAR G,et al.Stabilizing experience replay for deep multi-agent reinforcement lear-ning[J].International Conference on Machine Learning,2017,70(3):1146-1155.
[37]CIOSEK K,WHITESON S.Offer:Off environment reinforcement learning[J].AAAI Conference on Artificial Intelligence,2017.
[38]TESAURO G.Extending q-learning to general adaptivemulti-agent systems[J].Advances in Neural Information Processing Systems,2004,16(4):871-878.
[39]TAN M.Multi-Agent Reinforcement Learning:Independent vs.Cooperative Agents[C]∥Proceedings of the Tenth International Conference on Machine Learning.MA,USA:ICML Press,1993:330-337.
[40]SHOHAM Y,LEYTON K.Multiagent Systems:Algorithmic, Game-Theoretic,and Logical Foundations[M].New York:Cambridge University Press,2009.
[41]ZAWADZKI E,LIPSON A,LEYTON K.Empirically evaluating multiagent learning algorithms[J/OL].https://arxiv.org/abs/1401.8074.
[42]YANG Y,LUO R,LI M,et al.Mean Field Multi-Agent Reinforcement Learning[J/OL].https://arxiv.org/abs/1802.05438.
[43]PALMER G,TUYLS K,BLOEMBERGEN D,et al.Lenient multi-agent deep reinforcement learning[C]∥Proceedings of the 17th International Conference on Autonomous Agents and Multi-agent Systems.Swede:AAMAS press,2018:443-451.
[44]ZHENG Y,MENG Z,HAO J,et al.Weighted Double Deep Multiagent Reinforcement Learning in Stochastic Cooperative Environments[C]∥ Pacific Rim International Conference on Artificial Intelligence.Springer,Cham:PRICAI press,2018:421-429.
[45]TAMPUU A,MATIISEN T,KODELJA D,et al.Multiagent cooperation and competition with deep reinforcement learning [J].Plus One,2017,12(4):e0172395.
[46]SONG J,REN H,SADIGH D,et al.Multi-agent generative adversarial imitation learning[J/OL].https://arxiv.org/abs/1807.09936.
[47]WAI H T,YANG Z,WANG Z,et al.Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization[J/OL].https://arxiv.org/abs/1806.00877.
[48]ABOUHEAF M,GUEAIEB W.Multi-agent reinforcement learning approach based on reduced value function approximations[C]∥2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS).Canada:IEEE Press,2017:111-116.
[49]QI S,ZHU S C.Intent-aware Multi-agent Reinforcement Lear- ning[J/OL].https://arxiv.org/abs/1803.02018.
[50]RAILEANU R,DENTON E,SZLAM A,et al.Modeling Others using Oneself in Multi-Agent Reinforcement Learning[J/OL].https://arxiv.org/abs/1802.09640.
[51]RABINOWITZ N,PERBET F,SONG H,et al.Machine Theory of Mind[J/OL].https://arxiv.org/abs/1802.07740.
[52]OMIDSHAFIEI S,KIM D,LIU M,et al.Learning to Teach in Cooperative Multiagent Reinforcement Learning[J/OL].https://arxiv.org/abs/1805.07830.
[53]GU S,LILLICRAP T,SUTSKEVER I,et al.Continuous deep q-learning with model-based acceleration[C]∥International Conference on Machine Learning.New York City:ICML Press,2016:2829-2838.
[54]DUAN Y,CHEN X,HOUTHOOFT R,et al.Benchmarking deep reinforcement learning for continuous control[C]∥International Conference on Machine Learning.New York City:ICML Press,2016:1329-1338.
[55]KOFINAS P,DOUNIS A I,VOUROS G A.Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids[J].Applied Energy,2018,219(3):53-67.
[56]CHEN W,ZHOU K,CHEN C.Real-time bus holding control on a transit corridor based on multi-agent reinforcement learning[C]∥ 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).Brazil:IEEE Press,2016:100-106.
[57]VIDHATE D A,KULKARNI P.Cooperative multi-agent reinforcement learning models (CMRLM) for intelligent traffic control[C]∥2017 1st International Conference on Intelligent Systems and Information Management (ICISIM).India:IEEE Press,2017:325-331.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[3] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[4] 刘兴光, 周力, 刘琰, 张晓瀛, 谭翔, 魏急波.
基于边缘智能的频谱地图构建与分发方法
Construction and Distribution Method of REM Based on Edge Intelligence
计算机科学, 2022, 49(9): 236-241. https://doi.org/10.11896/jsjkx.220400148
[5] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[6] 姜洋洋, 宋丽华, 邢长友, 张国敏, 曾庆伟.
蜜罐博弈中信念驱动的攻防策略优化机制
Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game
计算机科学, 2022, 49(9): 333-339. https://doi.org/10.11896/jsjkx.220400011
[7] 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军.
基于多智能体强化学习的端到端合作的自适应奖励方法
Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning
计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100
[8] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[9] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[10] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[11] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[12] 袁唯淋, 罗俊仁, 陆丽娜, 陈佳星, 张万鹏, 陈璟.
智能博弈对抗方法:博弈论与强化学习综合视角对比分析
Methods in Adversarial Intelligent Game:A Holistic Comparative Analysis from Perspective of Game Theory and Reinforcement Learning
计算机科学, 2022, 49(8): 191-204. https://doi.org/10.11896/jsjkx.220200174
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!