计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200118-5.doi: 10.11896/jsjkx.231200118

• 智能计算 • 上一篇    下一篇

在知识图谱实体关系预测中对DistMult解码器的优化研究

韩以健, 王宝会   

  1. 北京航空航天大学软件学院 北京 100191
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 王宝会(wangbh@buaa.edu.cn)
  • 作者简介:(hyj1872@buaa.edu.cn)

Study on DistMult Decoder in Knowledge Graph Entity Relationship Prediction

HAN Yijian, WANG Baohui   

  1. School of Software,Beihang University,Beijing 100191,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:HAN Yijian,born in 1995,postgra-duate.His main research interests include graph neural networks and knowledge graph.
    WANG Baohui,born in 1973,senior engineer,master supervisor.His main research interests include software architecture,big data,artificial intelligence,etc.

摘要: 国家电网甘肃电力科学院希望通过大量科研文献构建电力行业知识图谱,并深度挖掘知识图谱中的的潜在关联。关系预测模型是解决这类问题的关键技术,也是知识图谱中的重要技术,是近年来科研工作者的研究热点。大量论文和实验已经证明使用编码器加解码器组合的框架在关系预测任务中有不错的表现。在这种框架下,由于图神经网络技术的进步,近年来有有不少工作通过以图神经网络为编码器并加以优化的方案来提升关系预测的效果,而忽略了解码器的作用。受到余弦相似度的启发,提出了基于DistMult的新型解码器COS-DistMult,并在真实的数据集上进行对比实验。实验结果表明,关系预测模型的评价指标Hits@10的值提高了2%左右,证明在以编码器加解码器为框架的关系预测任务中,优化解码器结构是一种行之有效的方法。

关键词: 知识图谱, 图神经网络, 关系预测, DistMult解码器

Abstract: State Grid Gansu Electric Power Academy hopes to construct a knowledge graph of the power industry through a large amount of scientific research literature and deeply explore the potential correlations in the knowledge graph.The relationship prediction model is a key technology for solving such problems and an important technology in knowledge graphs,which has been a research hotspot for researchers in recent years.A large number of papers and experiments have demonstrated that the framework combining encoder and decoder performs well in relation prediction tasks.Under this framework,due to the advancement of graph neural network technology,there have been many works in recent years that have improved the performance of relationship prediction by using graph neural networks as encoders and optimizing them,while neglecting the role of decoders.Taking inspiration from cosine similarity,this paper proposes a novel decoder COS DistMult based on DistMult and conducts comparative experiments on real datasets,and the experimental results indicate that the evaluation indicator Hits@10of the relationship prediction model increases by 2%.It is proves that optimizing the decoder structure is an effective method in relation prediction tasks based on an encoder decoder framework.

Key words: Knowledge graph, Graph neural network, Relation prediction, DistMult decoder

中图分类号: 

  • TP301
[1]BORDES A,USUNIER N,GARCIADURAN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Proceedings of the 26thInternationalConferenceon Neural Information Processing Systems.Red Hook,USA:Curran Associates Inc,2013:2787-2795.
[2]LIN Y K,LIU Z Y,SUN M S,et al.Learning Entity and Relation Embeddings for KnowledgeGraphCompletion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.AAAI Press,2015:2181-2187.
[3]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning onmulti- relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning.New York,USA:ACM,2011:809-816.
[4]YANG B S,YIH W T,HE X D,et al.Embedding Entities and relations for Learning and Inference in Knowledge Bases [C/OL].https://arxiv.org/pdf/1412.6575.pdf.
[5]NICKEL M,ROSASCO L,POGGIO T.Holographic embed-dings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.AAAI Press,2016:19551961.
[6]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//ICLR.2017.
[7]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling Relational Data with Graph Convolutional Networks[J].Lecture Notes in Computer Science,2018,10843:593-607.
[8]JIN Z,YANG Z J.Timeknowledge representation learning based on relational time embedding[J].Journal of Tianjin Urban Construction University,2022(4):28.
[9]XUE X R,XU D L,LU Y.Research on Power DataAnalysis Algorithm Based on Knowledge Graph and ArtificialIntelligence[J].Electronic Desig Engineering,2023,31(22):13.
[10]SHAN X H,ZHAO X,CHEN W Y.Knowledge completion with hierarchical attention based on Bayesian rules[J].Computer Science,2023,50(11):234-240.
[11]CHEN H,LI G Y,QI R H.Improved Tucker decompositionknowledge graph completion algorithm[J].Practice and Understanding of Mathematics,2020,50(16):13.
[12]WANG K L,ZHOU Z L,CHEN D H.Researchon Link Prediction by Integrating GAT and CapsNet[J].Communication Technology,2022(2):55.
[13]PANG J,XU J,QIN H C.Knowledge hypergraph link predi-ction based on joint attention and convolutional networks[J].Computer Science and Exploration,2023,17(11):1.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!