计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200118-5.doi: 10.11896/jsjkx.231200118
韩以健, 王宝会
HAN Yijian, WANG Baohui
摘要: 国家电网甘肃电力科学院希望通过大量科研文献构建电力行业知识图谱,并深度挖掘知识图谱中的的潜在关联。关系预测模型是解决这类问题的关键技术,也是知识图谱中的重要技术,是近年来科研工作者的研究热点。大量论文和实验已经证明使用编码器加解码器组合的框架在关系预测任务中有不错的表现。在这种框架下,由于图神经网络技术的进步,近年来有有不少工作通过以图神经网络为编码器并加以优化的方案来提升关系预测的效果,而忽略了解码器的作用。受到余弦相似度的启发,提出了基于DistMult的新型解码器COS-DistMult,并在真实的数据集上进行对比实验。实验结果表明,关系预测模型的评价指标Hits@10的值提高了2%左右,证明在以编码器加解码器为框架的关系预测任务中,优化解码器结构是一种行之有效的方法。
中图分类号:
[1]BORDES A,USUNIER N,GARCIADURAN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Proceedings of the 26thInternationalConferenceon Neural Information Processing Systems.Red Hook,USA:Curran Associates Inc,2013:2787-2795. [2]LIN Y K,LIU Z Y,SUN M S,et al.Learning Entity and Relation Embeddings for KnowledgeGraphCompletion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.AAAI Press,2015:2181-2187. [3]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning onmulti- relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning.New York,USA:ACM,2011:809-816. [4]YANG B S,YIH W T,HE X D,et al.Embedding Entities and relations for Learning and Inference in Knowledge Bases [C/OL].https://arxiv.org/pdf/1412.6575.pdf. [5]NICKEL M,ROSASCO L,POGGIO T.Holographic embed-dings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.AAAI Press,2016:19551961. [6]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//ICLR.2017. [7]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling Relational Data with Graph Convolutional Networks[J].Lecture Notes in Computer Science,2018,10843:593-607. [8]JIN Z,YANG Z J.Timeknowledge representation learning based on relational time embedding[J].Journal of Tianjin Urban Construction University,2022(4):28. [9]XUE X R,XU D L,LU Y.Research on Power DataAnalysis Algorithm Based on Knowledge Graph and ArtificialIntelligence[J].Electronic Desig Engineering,2023,31(22):13. [10]SHAN X H,ZHAO X,CHEN W Y.Knowledge completion with hierarchical attention based on Bayesian rules[J].Computer Science,2023,50(11):234-240. [11]CHEN H,LI G Y,QI R H.Improved Tucker decompositionknowledge graph completion algorithm[J].Practice and Understanding of Mathematics,2020,50(16):13. [12]WANG K L,ZHOU Z L,CHEN D H.Researchon Link Prediction by Integrating GAT and CapsNet[J].Communication Technology,2022(2):55. [13]PANG J,XU J,QIN H C.Knowledge hypergraph link predi-ction based on joint attention and convolutional networks[J].Computer Science and Exploration,2023,17(11):1. |
|