计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200112-7.doi: 10.11896/jsjkx.231200112

• 大数据&数据科学 • 上一篇    下一篇

基于参数化量子线路的量子神经网络数据分类

陈超, 闫文杰, 薛桂香   

  1. 河北工业大学人工智能与数据科学学院 天津 300401
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 薛桂香(xueguixiang@hebut.edu.cn)
  • 作者简介:(chen.enda@foxmail.com)
  • 基金资助:
    国家自然科学基金(61702157)

Parameterized Quantum Circuits Based Quantum Neural Networks for Data Classification

CHEN Chao, YAN Wenjie, XUE Guixiang   

  1. School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:CHEN Chao,born in 1995,postgra-duate.His main research interests include quantum machine learning,machine learning theory,and its applications.
    XUE Guixiang,born in 1979,Ph.D,associate professor.Her main research interests include machine learning,deep learning,and its application in smart city and intelligent transport systems.
  • Supported by:
    National Natural Science Foundation of China(61702157).

摘要: 量子神经网络结合了量子计算与经典神经网络模型的优势,为未来人工智能领域的发展提供了一种全新的思路。尽管量子神经网络已被广泛研究,但数据编码方式以及不同训练线路对模型性能的影响尚未得到充分研究。为此,提出一种面向数据分类的量子神经网络新模型,该模型探究了不同数据编码方式和不同结构训练层对分类任务的影响。该方法首先对经典图像进行预处理,采用不同的数据编码方式将其编码到不同的参数化量子线路中进行训练,对模型的输出进行测量,使用参数移位规则更新训练参数完成数据分类。在MNIST手写体数据集上的实验结果表明,所提出的模型在数字{3,6}分类任务上的分类准确率超过了97%。与目前的主流方法相比,所提方法在分类准确率上有明显的提升。

关键词: 量子神经网络, 量子计算, 数据分类, 量子线路, 参数移位规则

Abstract: Quantum neural network combines the advantages of quantum computing and classical neural network model,and provides a new idea for the development of artificial intelligence in the future.Although quantum neural networks have been widely studied,the impact of data encoding methods and different training circuits on model performance has not yet been fully explored.Therefore,this paper proposes a new quantum neural network model for data classification,which explores the influence of diffe-rent data encoding methods and different structure training layers on classification tasks.The method first preprocesses the classical image,uses different data encoding methods to encode it into different parameterized quantum circuits for training,measures the output of the model,and uses the parameter shift rule to update the training parameters to complete the data classification.Experimental results on MNIST handwritten dataset show that the proposed model achieves more than 97% classification accuracy on digit {3,6} classification task.Compared with the current mainstream methods,the proposed method has a significant improvement in classification accuracy.

Key words: Quantum neural networks, Quantum computing, Data classification, Quantum circuit, Parameter shift rules

中图分类号: 

  • TP391
[1]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[2]XU X,DING Y,HU S X,et al.Scaling for edge inference ofdeep neural networks[J].Nature Electronics,2018,1(4):216-222.
[3]BRAVYI S,DIAL O,GAMBETTA J M,et al.The future ofquantum computing with superconducting qubits[J].Journal of Applied Physics,2022,132(16).
[4]BEER K,BONDARENKO D,FARRELLY T,et al.Trainingdeep quantum neural networks[J].Nature Communications,2020,11(1):808.
[5]JIE G J,ZHUANG Z Q.Quantum Neural Networks[J].Computer Science,2001(7):1-6.
[6]ZHANG L F,ZHANG X P.Network Traffic Prediction based on BP Neural networkoptimized by Quantum Genetic Algorithm[J].Computer Engineering and Science,2016,38(1):114-119.
[7]HUANG H Y,BROUGHTON M,COTLER J,et al.Quantum advantage in learning from experiments[J].Science,2022,376(6598):1182-1186.
[8]SIM S,JOHNSON P D,ASPURU-GUZIK A.Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms[J].Advanced Quantum Technologies,2019,2(12):1900070.
[9]ZHENG J,GAO Q,LV Y X,et al.Model and application ofquantum Convolutional Neural Network Based on Parameterized quantum Circuit[J].Control Theory & Applications,2021,38(11):1772-1784.
[10]PRESKILL J.Quantum computing in the NISQ era and beyond[J].Quantum,2018,2:79.
[11]WANG H,LI Z,GU J,et al.QOC:quantum on-chip trainingwith parameter shift and gradient pruning[C]//Proceedings of the 59th ACM/IEEE Design Automation Conference.2022:655-660.
[12]CHEN K,ALBEVERIO S,FEI S M.Entanglement of formationof bipartite quantum states[J].Physical Review Letters,2005,95(21):210501.
[13]HUANG C H.Analysis and discussion on superposition princi-ple of quantum states and its measurement[J].University Phy-sics,2013,32(4):22-24,27.
[14]CROOKS G E.Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition[J].arXiv:1905.13311,2019.
[15]QIAN C.Quantum Entanglement and Quantum Computation[J].Computer Science,2006(12):230-234.
[16]CORTESE J,BRAJE T.System and technique for loading classical data into a quantum computer:U.S.Patent 11,113,621[P].2021-09-07.
[17]GANDHI V,PRASAD G,COYLE D,et al.Quantum neuralnetwork-based EEG filtering for a brain-computer interface[J].IEEE Transactions on Neural Networks and Learning Systems,2013,25(2):278-288.
[18]CHAPELLE O,WU M.Gradient descent optimization ofsmoothed information retrieval metrics[J].Information Retrieval,2010,13:216-235.
[19]KOBAYASHI T.Large Margin In Softmax Cross-Entropy Loss[C]//BMVC.2019:3.
[20]SHAIK E H,RANGASWAMY N.Implementation of quantumgates based logic circuits using IBM Qiskit[C]//2020 5th International Conference on Computing,Communication and Security(ICCCS).IEEE,2020:1-6.
[21]CONG I,CHOI S,LUKIN M D.Quantum convolutional neural networks[J].Nature Physics,2019,15(12):1273-1278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!