计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100051-7.doi: 10.11896/jsjkx.240100051

• 图像处理&多媒体技术 • 上一篇    下一篇

改进YOLOv5s的城市建筑环境下的烟火检测算法

于泳波, 孙振, 朱灵茜, 李庆党   

  1. 青岛科技大学信息科学技术学院 山东 青岛 266061
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 作者简介:(2248406167@qq.com)

Improved YOLOv5s Algorithm for Detecting Fireworks in Urban Building Environments

YU Yongbo, SUN Zhen, ZHU Lingxi, LI Qingdang   

  1. College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao,Shandong 266061,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:YU Yongbo,born in 2000,postgraduate.His main research interest is computer vision.
    LI Qingdang,born in 1973,professor,Ph.D supervisor.His main research interests include intelligent manufactu-ring systems and equipment,artificial intelligence and big data technology,etc.

摘要: 针对城市建筑环境下的烟火检测存在检测精度低、耗时较长等问题,提出一种基于YOLOv5s改进的烟火检测算法。首先通过K-means重新聚类针对烟火数据集的先验框;在YOLOv5s的主干特征提取网络中嵌入CA(Coordinate attention)注意力机制,抑制噪声的干扰;借鉴DAMO-YOLO中的Efficient RepGFPN和BiFPN(Bidirectional Feature Pyramid Network)思想设计了一个全新的颈部BiGFPN,重构YOLOv5s的颈部促进多尺度融合;为了有效利用特征图的语义信息,引入轻量级通用上采样算子CARAFE(Content-Aware ReAssembly of Features);为了降低模型改进带来的参数量和计算量,采用GhostNet重构YOLOv5s的颈部;将边界框回归损失函数CIoU替换为SIoU,加速模型的收敛并且提高精度。实验结果表明,改进后的YOLOv5s拥有更少的参数量和计算量,而且mAP50提升了4.6%,基本能够满足烟火检测的要求。

关键词: 烟火检测, YOLOv5s, CA, BiGFPN, CARAFE, GhostNet, SIoU

Abstract: A smoke and fire detection algorithm based on improved YOLOv5s is proposed to address the issues of low detection accuracy and long time consumption in urban building environments.Firstly,the prior boxes for the fireworks dataset are reclustered using K-means;embed CA(Coordinate Attention) mechanism in the backbone feature extraction network of YOLOv5s to suppress noise interference;drawing inspiration from the Efficient RepGFPN and BiFPN(bidirectional feature pyramid network) ideas in DAMO-YOLO,a novel neck BiGFPN is designed to reconstruct the neck of YOLOv5s and promote multi-scale fusion.In order to effectively utilize the semantic information of feature maps,a lightweight universal upsampling operator CARAFE(content aware reassembly of features) is introduced.In order to reduce the number of parameters and computation caused by model improvement,GhostNet is used to reconstruct the neck of YOLOv5s.Replacing the bounding box regression loss function CIoU with SIoU accelerates the convergence of the model and improves accuracy.Experimental results show that the improved YOLOv5s has fewer parameters and computational complexity,and the mAP50 has increased by 4.6%,which can basically meet the requirements of fireworks detection.

Key words: Pyrotechnic detection, YOLOv5s, CA, BiGFPN, CARAFE, GhostNet, SIoU

中图分类号: 

  • TP391
[1]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Compu-ter Vision and Pattern Recognition.2014:580-587.
[2]GIRSHICKR.Fast R-CNN[C]//Proceedings of the 2015 IEEE/CVF International Conference on Computer Vision.2015:1440-1448.
[3]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towardsreal-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[4]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788.
[5]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.2017:651.
[6]REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[7]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[8]FRIZZIS,KAABI R,BOUCHOUICHA M,et al.Convolutional neural netword for video fire and smoke deteciton [C]//IECON 2016-42nd Annual Conference of IEEE Industrial Electronics Society.Florence:IECON,2016.877-882.
[9]HOU Y C,WANG H Q,WANG K.Improved multi-scale flamedetection method [J].Chinese Journal of Liquid Crystals and Displays,2021,36(5):751-759.
[10]WU S X,ZHANG L B.Using popular object detection methods for real time forest fire detection[C]//11th International Symposium on Computational Intelligence and Design(ISCID).Hang-zhou,China,Piscataway,NJ:IEEE,2018:280-284.
[11]HUI T,HALIDAN A,DU H.Multi-type flame detection combined with Faster R-CNN[J].Journal of Image and Graphics,2019,24(1):73-83.
[12]WANG Y X,XIAO X L,WANG P F,et al.Improved YOLOv5s small target smoke and fire detection algorithm[J].Computer Engineering and Applications,2023,59(1):72-81.
[13]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722.
[14]XU X,JIANG Y,CHEN W,et al..DAMO-YOLO:A Report on Real-Time Object Detection Design[J].arXiv:2211.15444,2022.
[15]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficientobject detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[16]WANG J Q,CHEN K,XU R,et al.CARAFE:contentaware reassembly of features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision.2019:3007-3016.
[17]HAN K,WANG Y,TIAN Q,et al.Ghostnet:more featuresfrom cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1580-1589.
[18]GEVORGYAN Z.SIoU loss:more powerful learning for bounding box regression[J].arXiv:2205.12740,2022.
[19]ZHENG Z,WANG P,LIU W,et al.Distance- IoU loss:fasterand better learning for bounding box regression[C]// Procee-dings of the AAAI Conference on Artificial Intelligence.2020:12993-13000.
[20]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:8759-8768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!