计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100122-7.doi: 10.11896/jsjkx.231100122

• 图像处理&多媒体技术 • 上一篇    下一篇

基于YOLOv8改进的脑癌检测算法

王喆1, 赵慧俊2,3, 谭超1, 李骏1, 申冲2,3   

  1. 1 中北大学机械工程学院 太原 030051
    2 中北大学仪器与电子学院 太原 030051
    3 山西省省部共建动态测试技术国家重点实验室 太原 030051
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 申冲(shenchong@nuc.edu.cn)
  • 作者简介:(635087094@qq.com)
  • 基金资助:
    光电信息控制和安全技术重点实验室基金(2021JCJQLB055010)

Enhanced Brain Cancer Detection Algorithm Based on YOLOv8

WANG Zhe1, ZHAO Huijun2,3, TAN Chao1, LI Jun1, SHEN Chong2,3   

  1. 1 School of Mechanical Engineering,North University of China,Taiyuan 030051,China
    2 School of Instruments and Electronics,North University of China,Taiyuan 030051,China
    3 State Key Laboratory of Dynamic Measurement Technology of Shanxi Province,Taiyuan 030051,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:WANG Zhe,born in 2003,undergra-duate,is a member of CCF(No.Q2550G).His main research interests include machine learning and autopilot.
    SHEN Chong,born in 1986,Ph.D supervisor,professor.His main research interests include artificial intelligence and bionic navigation.
  • Supported by:
    Key Laboratory of Optoelectronic Information Control and Security Technology Fund(2021JCJQLB055010).

摘要: 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。

关键词: YOLOv8, 脑癌, Efficient Multi-Scale Attention模块, Bidirectional Feature Pyramid Network结构, Missed Softplus with Identity Shortcut激活函数, Minimum Point Distance Intersection over Union 损失函数

Abstract: Automatically detecting the location of brain tumors in magnetic resonance imaging is a complex and laborious task that requires a lot of time and resources.Traditional identification schemes often misunderstand,omit,and mislead,affecting the progress of patient treatment and posing a risk to patient safety.To further improve the identification and appraisal results,this paper introduces four key improvement measures.Firstly,an efficient multi-scale attention EMA is adopted,which can encode global information,recalibrate information,and further aggregate information through parallel branch output features for cross-dimensional interaction.Secondly,the BiFPN(Bidirectional Feature Pyramid Network)module is introduced to shorten the time required for each detection and improve image recognition results.Then,the MDPIoU loss function and Mish activation function are improved to further enhance detection accuracy.Finally,simulation experiments are conducted for verification.The experimental results show that the improved YOLOv8 algorithm has improved precision,recall,and mean average precision(mAP)in brain cancer detection.Among them,precision,recall,mAP@0.5 and mAP@0.5:0.9increases by 4.48%,2.64%,2.6% and 17.0% respectively.

Key words: YOLOv8, Brain Tumor, Efficient Multi-scale attention model, Bidirectional Feature Pyramid Network, Missed Softplus with Identify Shortcut activation function, Minimum Point Distance Intersection over Union loss function

中图分类号: 

  • TP391.4
[1]HE C E ,XU H J,WANG Z,et al.Automatic Segmentation Algorithm for Multimodal Magnetic Resonance-Based Brain Tumor Images[J].Acta Optica Sinica,2020,40(6):0610001.
[2]MOINUL I,TANZIM M R,MOHAMMED K,et al.Effectiveness of Federated Learning and CNN Ensemble Architectures for Identifying Brain Tumors Using MRI Images[J].Neural processing letters,2022,55(4):3379-3809.
[3]Abd El KADER,ISSELMOU,et al.Differential deep convolutional neural network model for brain tumor classification[J]. Brain Sciences,2021,11(3):352.
[4]KANG M,TING C M,TING F F,et al.RCS-YOLO:A Fast and High-Accuracy Object Detector for Brain Tumor Detection[J].arXiv:2307.16412,2023.
[5]HOSSAIN T,SHISHIR F S,ASHRAF M,et al.Brain tumordetection using convolutional neural network[C]//1st international Conference on Advances in Science,Engineering and Robotics Technology(ICASERT 2019).IEEE,2019.
[6]VANKDOTHU R,HAMEED M A,FATIMA H.A braintumor identification and classification using deep learning based on CNN-LSTM method[J].Computers and Electrical Engineering,2022,101:107960.
[7]TIWARI P,PANT B,ELARABAWY M M,et al.Cnn basedmulticlass brain tumor detection using medical imaging[J].Computational Intelligence and Neuroscience,2022.
[8]MONTAHA S,AZAM S,RAFID A K M R H,et al.Timedistributed-cnn-lstm:A hybrid approach combining cnn and lstm to classify brain tumor on 3d mri scans performing ablation study[J].IEEE Access,2022,10:60039-60059.
[9]ARG S,ALMEIDA D,LYMAN K.Resnet in resnet:Generalizing residual architectures[J].arXiv:1603.08029,2016.
[10]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[11]ZHU Y,NEWSAM S.Densenet for dense flow[C]//2017 IEEE International Conference on Image Processing(ICIP).IEEE,2017:790-794.
[12]SINHA D,EL-SHARKAWY M.Thin mobilenet:An enhancedmobilenet architecture[C]//2019 IEEE 10th Annual Ubiquitous Computing,Electronics & Mobile Communication Conference(UEMCON).IEEE,2019:0280-0285.
[13]OUYANG D,HE S,ZHANG G,et al.Efficient Multi-Scale Attention Module with Cross-Spatial Learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2023:1-5.
[14]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[15]SILIANG M,YONG X.MPDIoU:A Loss for Efficient and Accurate Bounding Box Regression[J].arXiv:2307.07662,2023.
[16]MISRA D.Mish:A self regularized non-monotonic activationfunction[J].arXiv:1908.08681,2019.
[17]ABOAH A,WANG B,BAGCI U,et al.Real-time multi-classhelmet violation detection using few-shot data sampling technique and yolov8[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5349-5357.
[18]ZHANG Y,GUO Z,WU J,et al.Real-time vehicle detectionbased on improved yolo v5[J].Sustainability,2022,14(19):12274.
[19]WANG Y,WANG H,XIN Z.Efficient detection model of steel strip surface defects based on YOLO-V7[J].IEEE Access,2022,10:133936-133944.
[20]XUE J,CHENG F,LI Y,et al.Detection of farmland obstacles based on an improved YOLOv5s algorithm by using CIoU and anchor box scale clustering[J].Sensors,2022,22(5):1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!