计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 352-361.doi: 10.11896/jsjkx.240100184

• 信息安全 • 上一篇    下一篇

一种基于区块链的高可信流数据查询验证方案

杨帆, 孙奕, 林玮, 高琦   

  1. 信息工程大学密码工程学院 郑州 450001
  • 收稿日期:2024-01-25 修回日期:2024-06-20 出版日期:2025-04-15 发布日期:2025-04-14
  • 通讯作者: 孙奕(11112072@bjtu.edu.cn)
  • 作者简介:(fanny_wawa@163.com)
  • 基金资助:
    河南省自然科学基金(242300420297)

Blockchain-based Highly Trusted Query Verification Scheme for Streaming Data

YANG Fan, SUN Yi, LIN Wei, GAO Qi   

  1. School of Cryptographic Engineering,Information Engineering University,Zhengzhou 450001,China
  • Received:2024-01-25 Revised:2024-06-20 Online:2025-04-15 Published:2025-04-14
  • About author:YANG Fan,born in 1996,postgraduate.Her main research interests include network and information security and verifiable computing.
    SUN Yi,born in 1979,Ph.D,associate professor,Ph.D supervisor.Her main research interests include network and information security,data security exchange.
  • Supported by:
    Natural Science Foundation of Henan Province,China(242300420297).

摘要: 随着智慧物联网应用的普及,物联网设备持续收集大量流数据用于实时处理成为必然。由于其资源受限,须将大量流数据外包给服务器存储管理,而如何确保实时性强、无限增长的流数据完整性是一个复杂且具有挑战性的问题。虽然已有研究提出了关于流数据完整性验证的方案,但在不可信的外包存储服务环境中恶意服务器返回的查询结果正确性和数据完整性仍然无法保证。最近,基于分布式共识实现的区块链技术出现,给数据完整性验证问题带来了新的解决思路和方法。文中借助区块链的不可篡改性,提出了一种高可信流数据查询验证方案,设计了区块链上低维护成本的数据结构CS-DCAT,仅将认证树的根节点哈希值存储在区块链上。该方案适用于处理数据量不可预测的流数据,且能实现实时的流数据范围查询验证。通过安全性分析证明了所提方案的正确性和安全性,性能评估结果表明所提方案能够实现区块链上的低gas开销,范围查询和验证时的计算复杂度也仅与当前的数据量有关,不会引入过多额外的计算成本和通信开销。

关键词: 数据完整性验证, 流数据, 可认证数据结构, 区块链技术, 变色龙认证树

Abstract: With the popularization of intelligent IoT applications,IoT devices are required to continuously collect a large amount of streaming data for real-time processing.Due to their resource constraints,a large amount of stream data must be outsourced to server storage management.How to ensure the integrity of stream data with strong real-time and infinite growth is a complex and challenging problem.Although research has proposed schemes for streaming data integrity verification,the correctness and data integrity of query results returned by malicious servers in untrustworthy outsourced storage service environments are still not guaranteed.Recently,the emergence of blockchain technology based on distributed consensus implementation brings new solution ideas and methods to the data integrity verification problem,therefore,this paper proposes a highly trustworthy streaming data query verification scheme based on the immutability of blockchain,and designs a low-maintenance data structure CS-DCAT on the blockchain,which only stores the root node hash value of the authentication tree on the blockchain.It is suitable for processing streaming data with unpredictable data volume and can realize range query verification of streaming data.The security analysis proves the correctness and security of this scheme,and the performance evaluation shows that this scheme can realize low gas overhead on the blockchain,and the computational complexity of range query and verification is only related to the current data volume,which does not introduce too much extra computational cost and communication overhead.

Key words: Data integrity verification, Streaming data, Authenticated data structure(ADS), Blockchain technology, Chameleon authentication tree

中图分类号: 

  • TP309
[1]LYU G,BRENNAN R W.Towards IEC 61499-Based Distributed Intelligent Automation:A Literature Review[J].IEEE Transactions on Industrial Informatics,2021,17(4):2295-2306.
[2]GAO X,ZHOU M J.Development Status of Smart Home and Exploration of Open Platform [J].China Telecom,2020(7):52-57.
[3]GROBAUER B,WALLOSCHEK T,STOCKER E.Understanding Cloud Computing Vulnerabilities[J].IEEE Security & Privacy Magazine,2011,9(2):50-57.
[4]SCHROEDER D,SCHROEDER H.Verifiable Data Streaming[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security-CCS’12.ACM Press,2012:953.
[5]WEI Y S,CAO X M,WANG S H,et al.Dual Data Integrity Verification Scheme for Cloud Storage[J].Journal of Chinese Computer Systems.2024,45(12):2944-2950.
[6]PAPAMANTHOU C,SHI E,TAMASSIA R,et al.Streaming Authenticated Data Structures[J].Streaming Authenticated Data Structures,2013,7881:353-370.
[7]YU C M.POSTER:Lightweight Streaming Authenticated Data Structures[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:1693-1695.
[8]XU J,WEI L,WU W,et al.Privacy-preserving Data IntegrityVerification by Using Lightweight Streaming Authenticated Data Structures for Healthcare Cyber-physical System[J].Future Generation Computer Systems,2018,108:1287-1296.
[9]SCHÖDER D,SIMKIN M.VeriStream-A Framework for Verifiable Data Streaming[M]//Financial Cryptography and Data Security.Berlin:Springer,2015:548-566.
[10]KRUPP J,SCHRÖDER D,SIMKIN M,et al.Nearly Optimal Verifiable Data Streaming[M]//Public-Key Cryptography-PKC.Berlin:Springer,2016:417-445.
[11]SUN Y,LIU Q,CHEN X,et al.An Adaptive Authenticated Data Structure With Privacy-Preserving for Big Data Stream in Cloud[J].IEEE Transactions on Information Forensics and Security,2020,15:3295-3310.
[12]MIAO M,LI J,WANG Y,et al.Verifiable Data Streaming Protocol Supporting Update History Queries[J].International Journal of Intelligent Systems,2022,37(12):11342-11361.
[13]WU J,WANG J,YONG X,et al.New Unbounded VerifiableData Streaming for Batch Query with Almost Optimal Overhead[M]//Computer Security-ESORICS 2022.Cham:Springer,2022,13554:346-366.
[14]SUN W P,WANG S,LI J.Lightweight and Efficient Verifiable Query Scheme for Blockchain[J].Journal of Chinese Computer Systems,2024,45(8):1944-1952.
[15]XU C,ZHANG C,XU J.vChain:Enabling Verifiable BooleanRange Queries over Blockchain Databases[C]//Proceedings of the 2019 International Conference on Management of Data.2019:141-158.
[16]ZHANG C,XU C,XU J,et al.GEM2-Tree:A Gas-EfficientStructure for Authenticated Range Queries in Blockchain[C]//Proceedings of the 35th International Conference on Data Engineering.Macao,Macao:IEEE,2019:842-853.
[17]WANG H,XU C,ZHANG C,et al.vChain+:Optimizing Verifiable Blockchain Boolean Range Queries[C]//2022 IEEE 38th International Conference on Data Engineering.Kuala Lumpur,Malaysia:IEEE,2022:1927-1940.
[18]COOK D J,YOUNGBLOOD M,HEIERMAN E O,et al.MavHome:An Agent-based Smart Home[C]//Proceedings of the First IEEE International Conference on Pervasive Computing and Communications.Fort Worth,TX,USA:IEEE Comput.Soc,2003:521-524.
[19]NAGHOOSI E,IZADI I,CHEN T W.A Study on The Relation Between Alarm Deadbands and Optimal Alarm Limits[C]//Proceedings of the 2011 American Control Conference.San Francisco,CA:IEEE,2011:3627-3632.
[20]LI F,HADJIELEFTHERIOU M,KOLLIOS G,et al.Authen-ticated Index Structures for Aggregation Queries[J].ACM Transactions on Information and System Security,2010,13(4):1-35.
[21]OMOHUNDRO S.Cryptocurrencies,Smart Contracts,and Artificial Intelligence[J].AI Matters,2014,1(2):19-21.
[22]BRASSARD G,CHAUM D,CRÉPEAU C.Minimum Disclosure Proofs of Knowledge[J].Journal of computer and system sciences,1988,37(2):156-189.
[23]KRAWCZYK H,RABIN T.Chameleon Hashing and Signatures[J/OL].https://eprint.iacr.org/1998/010.
[24]MERKLE R C.Protocols for Public Key Cryptosystems[C]//IEEE Symposium on Security and Privacy.1980:122-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!