计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 277-286.doi: 10.11896/jsjkx.240100204

• 人工智能 • 上一篇    下一篇

基于双向图注意力网络的潜在热点话题谣言检测

李劭, 蒋方婷, 杨鑫岩, 梁刚   

  1. 四川大学网络空间安全学院 成都 610211
  • 收稿日期:2024-01-28 修回日期:2024-05-15 出版日期:2025-03-15 发布日期:2025-03-07
  • 通讯作者: 梁刚(lianggang@scu.edu.cn)
  • 作者简介:(lishao@stu.scu.edu.cn)
  • 基金资助:
    国家自然科学基金重大项目(62162057)

Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network

LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang   

  1. School of Cyber Science and Engineering,Sichuan University,Chengdu 610211,China
  • Received:2024-01-28 Revised:2024-05-15 Online:2025-03-15 Published:2025-03-07
  • About author:LI Shao,born in 1999,postgraduate.His main research interests include rumor detection and social network.
    LIANG Gang,born in 1976,Ph.D,associate professor,master supervisor.His main research interests include network security,online public opinion analysis and prediction,and AI security.
  • Supported by:
    National Natural Science Foundation of China(62162057).

摘要: 现有社交网络谣言检测方法大多将社交网络中的单个帖子视为检测目标,存在因数据量不足而导致的检测冷启动问题,影响检测性能。另外,现有方法没有对海量社交网络信息中与检测无关的信息进行过滤,导致检测时延较长,性能较差。在分析谣言的传播特征时,现有方法大多侧重于谣言传播过程中的静态特征,难以充分利用节点间的动态关系对复杂的传播过程进行表征,导致性能提升存在瓶颈。针对以上问题,文中提出了一种基于潜在热点话题和图注意力神经网络的谣言检测方法,该方法采用神经主题模型和潜在热点话题发现模型进行话题级别的谣言检测以克服冷启动问题,并设计了一个基于双向图注意力神经网络的检测模型TPC-BiGAT,分析谣言话题传播过程中的动态特征以进行谣言真实性检测。在3个公开数据集上进行了多次实验证明,该方法在准确率上较现有方法取得了3%~5%的显著提升,验证了所提方法的有效性。

关键词: 谣言检测, 社交网络, 潜在热点话题, 图神经网络, 主题聚类

Abstract: Most of the existing methods for detecting rumors on social media networks typically focus on individual posts as the target of detection,which leads to a cold start problem due to insufficient data,adversely affecting the detection performance.Moreover,these methods do not filter out the vast amount of irrelevant information in social media networks,resulting in longer detection latency and poorer performance.Additionally,current methods tend to emphasize static features during the spread of rumors when analyzing the characteristics of rumor propagation,making it difficult to fully leverage the dynamic relationships between nodes to model the complex propagation process.To address these issues,a rumor detection method based on potential hot topics and graph attention neural networks is proposed.The method employs a neural topic model and a potential hot topic discover model for topic-level rumor detection to overcome the cold start problem.Furthermore,a detection model named TPC-Bi-GAT is designed to analyze the dynamic features of rumor topic propagation for authenticity detection.Experiments on 3 public datasets show that the proposed method achieves a significant improvement of 3%~5% in accuracy compared with the existing methods,which verifies the effectiveness of the proposed method.

Key words: Rumor detection, Social network, Potential hot topic, Graph neural network, Topic cluster

中图分类号: 

  • TP181
[1]CAO J,GUO J B,LI X,et al.Automatic rumor detection on microblogs:A survey [J].arXiv:1807.03505,2018.
[2]GUPTA A,KUMARAGURU P,CASTILLO C,et al.Tweetcred:Real-time credibility assessment of content on twitter [C]//International Conference on Social Informatics.Springer,2014:228-243.
[3]MORRIS M R,COUNTS S,ROSEWAY A,et al.Tweeting is believing? Understanding microblog credibility perceptions [C]//Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work.2012:441-450.
[4]SUN S Y,LIU H Y,HE J,et al.Detecting event rumors on sina weibo automatically [C]//Asia-Pacific Web Conference.Sprin-ger,2013:120-131.
[5]LIU X M,NOURBAKHSH A,LI Q,et al.Realtime rumor debunking on twitter [C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1867-1870.
[6]JIN Z W,CAO J,ZHANG Y D,et al.Novel visual and statistical image features for microblogs news verification [J].IEEE Transactions on Multimedia,2016,19(3):598-608.
[7]MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks [C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:3818-3824.
[8]MA J,GAO W,WONG F K.Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning [C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:708-717.
[9]BIAN T,XIAO X,XU T Y,et al.Rumor detection on social media with bi-directional graph convolutional networks [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:549-556.
[10]HUANG Q,ZHOU C,WU J,et al.Deep spatial-temporal structure learning for rumor detection on Twitter[J].Neural Comput-ing and Applications,2023,35(18):12995-13005.
[11]LIN H Z,YI P Y,MA J,et al.Zero-shot rumor detection with propagation structure via prompt learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:5213-5221.
[12]LIU J W,XIE J Y,ZHANG F R,et al.Knowledge-EnhancedHierarchical Information Correlation Learning for Multi-Modal Rumor Detection[J].arXiv:2306.15946,2023.
[13]PI DE C,WU Z Y,CAO J.Early Rumor Detection MethodBased on Knowledge Graph Representation Learning[J].Acta Electonica Sinica,2023,51(2):385.
[14]TAN L,MA Z H,CAO J,et al.Rumor detection based on topic classification and multi-scale feature fusion[J/OL].https://iopscience.iop.org/article/10.1088/1742-6596/1601/3/032032/pdf.
[15]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter [C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684.
[16]YANG F,LIU Y,YU X H,et al.Automatic detection of rumor on sina weibo [C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7.
[17]KOWN S,CHA M Y,JUNG K,et al.Prominent features of rumor propagation in online social media [C]//IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108.
[18]ZUBIAGA A,AKER A,BONTCHEVA K,et al.Detection and resolution of rumours in social media:A survey [J].ACM Computing Surveys(CSUR),2018,51(2):1-36.
[19]WU Z Y,PI D C,CHEN J F,et al.Rumor detection based on propagation graph neural network with attention mechanism [J].Expert Systems with Applications,2020,158:113595.
[20]GUO H,CAO J,ZHANG Y Z,et al.Rumor detection with hierarchical social attention network [C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:943-951.
[21]AJAO O,BHOWMIK D,ZARGARI S.Fake news identification on twitter with hybrid cnn and rnn models [C]//Proceedings of the 9th International Conference on Social Media Snd society.2018:226-230.
[22]MA J,GAO W,WONG F K.Rumor detection on twitter with tree-structured recursive neural networks [C]//Association for Computational Linguistics.2018.
[23]HUANG Q,ZHOU C,WU J,et al.Deep structure learning for rumor detection on twitter [C]//2019 International Joint Conference on Neural Networks(IJCNN).IEEE,2019:1-8.
[24]GROOTENDORST M.BERTopic:Neural topic modeling with a class-based TF-IDF procedure [J].arXiv:2203.05794,2022.
[25]RONG Y,HUANG W B,XU T Y,et al.Dropedge:Towardsdeep graph convolutional networks on node classification [J].arXiv:1907.10903,2019.
[26]LIN H Z,MA J,CHEN M F,et al.Rumor detection on twitter with claim-guided hierarchical graph attention networks [J].arXiv:2110.04522,2021.
[27]ZENG F Z,GAO W.Early Rumor Detection Using NeuralHawkes Process with a New Benchmark Dataset [C]//Procee-dings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics.2022:4105-4117.
[28]MA J,GAO W,WEI Z Y,et al.Detect rumors using time series of social context information on microblogging websites [C]//The 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754.
[29]LI G H,DONG M,MING L F,et al.Deep reinforcement learning based ensemble model for rumor tracking [J].Information Systems,2022,103(C):101772.
[30]WU Z Y,PI D C,CHEN J F,et al.Rumor detection based on propagation graph neural network with attention mechanism [J].Expert Systems with Applications,2020,158:113595.
[31]THOTA R N,SUN X Y,DAI J.Early Rumor Detection in Social Media Based on Graph Convolutional Networks [C]//2023 International Conference on Computing,Networking and Communications(ICNC).IEEE,2023:516-522.
[32]YAO Y,ROSCSCO L,CAPOMMETTO A.On early stopping in gradient descent learning [J].Constructive Approximation,2007,26(2):289-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!