计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 277-286.doi: 10.11896/jsjkx.240100204
李劭, 蒋方婷, 杨鑫岩, 梁刚
LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang
摘要: 现有社交网络谣言检测方法大多将社交网络中的单个帖子视为检测目标,存在因数据量不足而导致的检测冷启动问题,影响检测性能。另外,现有方法没有对海量社交网络信息中与检测无关的信息进行过滤,导致检测时延较长,性能较差。在分析谣言的传播特征时,现有方法大多侧重于谣言传播过程中的静态特征,难以充分利用节点间的动态关系对复杂的传播过程进行表征,导致性能提升存在瓶颈。针对以上问题,文中提出了一种基于潜在热点话题和图注意力神经网络的谣言检测方法,该方法采用神经主题模型和潜在热点话题发现模型进行话题级别的谣言检测以克服冷启动问题,并设计了一个基于双向图注意力神经网络的检测模型TPC-BiGAT,分析谣言话题传播过程中的动态特征以进行谣言真实性检测。在3个公开数据集上进行了多次实验证明,该方法在准确率上较现有方法取得了3%~5%的显著提升,验证了所提方法的有效性。
中图分类号:
[1]CAO J,GUO J B,LI X,et al.Automatic rumor detection on microblogs:A survey [J].arXiv:1807.03505,2018. [2]GUPTA A,KUMARAGURU P,CASTILLO C,et al.Tweetcred:Real-time credibility assessment of content on twitter [C]//International Conference on Social Informatics.Springer,2014:228-243. [3]MORRIS M R,COUNTS S,ROSEWAY A,et al.Tweeting is believing? Understanding microblog credibility perceptions [C]//Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work.2012:441-450. [4]SUN S Y,LIU H Y,HE J,et al.Detecting event rumors on sina weibo automatically [C]//Asia-Pacific Web Conference.Sprin-ger,2013:120-131. [5]LIU X M,NOURBAKHSH A,LI Q,et al.Realtime rumor debunking on twitter [C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1867-1870. [6]JIN Z W,CAO J,ZHANG Y D,et al.Novel visual and statistical image features for microblogs news verification [J].IEEE Transactions on Multimedia,2016,19(3):598-608. [7]MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks [C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:3818-3824. [8]MA J,GAO W,WONG F K.Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning [C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:708-717. [9]BIAN T,XIAO X,XU T Y,et al.Rumor detection on social media with bi-directional graph convolutional networks [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:549-556. [10]HUANG Q,ZHOU C,WU J,et al.Deep spatial-temporal structure learning for rumor detection on Twitter[J].Neural Comput-ing and Applications,2023,35(18):12995-13005. [11]LIN H Z,YI P Y,MA J,et al.Zero-shot rumor detection with propagation structure via prompt learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:5213-5221. [12]LIU J W,XIE J Y,ZHANG F R,et al.Knowledge-EnhancedHierarchical Information Correlation Learning for Multi-Modal Rumor Detection[J].arXiv:2306.15946,2023. [13]PI DE C,WU Z Y,CAO J.Early Rumor Detection MethodBased on Knowledge Graph Representation Learning[J].Acta Electonica Sinica,2023,51(2):385. [14]TAN L,MA Z H,CAO J,et al.Rumor detection based on topic classification and multi-scale feature fusion[J/OL].https://iopscience.iop.org/article/10.1088/1742-6596/1601/3/032032/pdf. [15]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter [C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684. [16]YANG F,LIU Y,YU X H,et al.Automatic detection of rumor on sina weibo [C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7. [17]KOWN S,CHA M Y,JUNG K,et al.Prominent features of rumor propagation in online social media [C]//IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108. [18]ZUBIAGA A,AKER A,BONTCHEVA K,et al.Detection and resolution of rumours in social media:A survey [J].ACM Computing Surveys(CSUR),2018,51(2):1-36. [19]WU Z Y,PI D C,CHEN J F,et al.Rumor detection based on propagation graph neural network with attention mechanism [J].Expert Systems with Applications,2020,158:113595. [20]GUO H,CAO J,ZHANG Y Z,et al.Rumor detection with hierarchical social attention network [C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:943-951. [21]AJAO O,BHOWMIK D,ZARGARI S.Fake news identification on twitter with hybrid cnn and rnn models [C]//Proceedings of the 9th International Conference on Social Media Snd society.2018:226-230. [22]MA J,GAO W,WONG F K.Rumor detection on twitter with tree-structured recursive neural networks [C]//Association for Computational Linguistics.2018. [23]HUANG Q,ZHOU C,WU J,et al.Deep structure learning for rumor detection on twitter [C]//2019 International Joint Conference on Neural Networks(IJCNN).IEEE,2019:1-8. [24]GROOTENDORST M.BERTopic:Neural topic modeling with a class-based TF-IDF procedure [J].arXiv:2203.05794,2022. [25]RONG Y,HUANG W B,XU T Y,et al.Dropedge:Towardsdeep graph convolutional networks on node classification [J].arXiv:1907.10903,2019. [26]LIN H Z,MA J,CHEN M F,et al.Rumor detection on twitter with claim-guided hierarchical graph attention networks [J].arXiv:2110.04522,2021. [27]ZENG F Z,GAO W.Early Rumor Detection Using NeuralHawkes Process with a New Benchmark Dataset [C]//Procee-dings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics.2022:4105-4117. [28]MA J,GAO W,WEI Z Y,et al.Detect rumors using time series of social context information on microblogging websites [C]//The 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754. [29]LI G H,DONG M,MING L F,et al.Deep reinforcement learning based ensemble model for rumor tracking [J].Information Systems,2022,103(C):101772. [30]WU Z Y,PI D C,CHEN J F,et al.Rumor detection based on propagation graph neural network with attention mechanism [J].Expert Systems with Applications,2020,158:113595. [31]THOTA R N,SUN X Y,DAI J.Early Rumor Detection in Social Media Based on Graph Convolutional Networks [C]//2023 International Conference on Computing,Networking and Communications(ICNC).IEEE,2023:516-522. [32]YAO Y,ROSCSCO L,CAPOMMETTO A.On early stopping in gradient descent learning [J].Constructive Approximation,2007,26(2):289-315. |
|