计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 128-138.doi: 10.11896/jsjkx.240200099
金红1,3, 陈礼珂1, 游兰1,3, 吕顺营2,4, 周开成1, 肖奎1,4
JIN Hong1,3, CHEN Like1, YOU Lan1,3, LYU Shunying2,4, ZHOU Kaicheng1, XIAO Kui1,4
摘要: 随着基于位置的社交网络的流行,个性化兴趣点推荐已经成为一项重要任务。然而现有研究在对上下文信息建模及融合时对其内在联系考虑不充分,其中地理与时间两种上下文之间往往是相互影响的;此外,在建模用户社会关系时主要通过度量不同用户签到的POI子集之间的直接相似性来表达用户社交行为的相似性程度,未能更好地缓解数据稀疏对不同用户签到POI子集相似性度量的影响。因此,合理地重构了上下文信息模型并有效地融合建模到用户偏好中,提出了一种基于地理时空关联和社会影响的兴趣点推荐方法。该方法根据不同时间状态下用户的主要地理活动中心呈现空间聚集现象,使用带有时间约束的方法评估POI间的地理相关性,以建模POI地理信息对用户签到的影响。进一步地,在对用户社会关系建模时假设具有更多共同签到的POI或签到POI的类别有着更大重合度的用户社交行为的相似性更高,结合POI类别信息来提高社会关系建模的有效性和作用。最后,将提出的地理时空关联模型和用户社会关系模型融合到加权矩阵分解中,进行用户的个性化POI推荐。对比实验结果表明,所提方法具有更好的POI推荐性能,说明了提出的模型在上下文建模和克服数据稀疏性方面更具优势。
中图分类号:
[1]YE M,YIN P,LEE W C,et al.Exploitinggeographical Influence for collaborative point-of-interest recommendation[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.2011:325-334. [2]ZHANG J D,CHOW C Y.iGSLR:Personalized geo-social location recommendation:a kernel density estimation approach[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.2013:334-343. [3]LUO Y,LIU Q,LIU Z.STAN:Spatio-Temporal attention network for next location recommendation[C]//Proceedings of the Web Conference 2021.2021:2177-2185. [4]LIAN D,ZHAO C,XIE X,et al.GeoMF:joint geographicalmodeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:831-840. [5]LIU B,FU Y,YAO Z,et al.Learning geographical preferences for point-of-interest recommendation[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:1043-1051. [6]LI M,ZHENG W,XIAO Y,et al.Exploring temporal and spatial features for next POI recommendation in LBSNs[J].IEEE Access,2021,9:35997-36007. [7]RAHMANI H A,ALIANNEJADI M,BARATCH M,et al.A systematic analysis on the impact of contextual information on point-of-Interest recommendation[J].ACM Transactions on Information Systems(TOIS),2022,40(4):1-35. [8]GUO G,ZHANG J,THALMANN D.Merging trust in collaborative filtering to alleviate data sparsity and cold start[J].Knowledge-Based Systems,2014,57:57-68. [9]LI H,GE Y,HONG R,et al.Point-of-interest recommenda-tions:Learning potential check-ins from friends[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:975-984. [10]DING R,CHEN Z.RecNet:A deep neural network for personalized POI recommendation in location-based social networks[J].International Journal of Geographical Information Science,2018,32(8):1631-1648. [11]ZHANG J D,CHOW C Y.Geosoca:Exploiting geographical,so-cial and categorical correlations for point-of-interest recommendations[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.2015:443-452. [12]REN X,SONG M,HAIHONG E,et al.Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation[J].Neurocomputing,2017,241:38-55. [13]MA Y,MAO J,BA Z,et al.Location recommendation by combining geographical,categorical,and social preferences with location popularity[J].Information Processing & Management,2020,57(4):102251. [14]YUAN Q,CONG G,MA Z,et al.Time-aware point-of-interest recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.2013:363-372. [15]ZHAO S,ZHAO T,YANG H,et al.STELLAR:Spatial-temporal latent ranking for successive point-of-interest recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [16]ZHANG J D,CHOW C Y.TICRec:A probabilistic framework to utilize temporal influence correlations for time-aware location recommendations[J].IEEE Transactions on Services Computing,2015,9(4):633-646. [17]LUO Y,LIU Q,LIU Z.Stan:Spatio-temporal attention network for next location recommendation[C]//Proceedings of the Web Conference 2021.2021:2177-2185. [18]SEYEDHOSEINZADEH K,RAHMANI H A,AFSHARCHIM,et al.Leveraging social influence based on users activity centers for point-of-interest recommendation[J].Information Processing & Management,2022,59(2):102858. [19]PENG H W,JIN Y Y,LV X Q,et al.Context-aware POI recommendation based on matrix factorization[J].Chinese Journal of Computers,2019,42(8):1797-1811. [20]HE Y,WANG Z R,ZHOU X,et al.Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(9):2632-2639. [21]HAFNER A W.Pareto's principle:The 80-20 rule[J].Re-trieved December,2001,26:2001. [22]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [23]HU Y,KOREN Y,VOLINSKY C.Collaborative filtering forimplicit feedback datasets[C]//2008 Eighth IEEE International Conference on Data Mining.IEEE,2008:263-272. [24]HE X,ZHANG H,KAN M Y,et al.Fast matrix factorization for online recommendation with implicit feedback[C]//Procee-dings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:549-558. [25]LIU Y,PHAM T A N,CONG G,et al.An experimental evaluation of point-of-interest recommendation in location-based social networks[J].Proceedings of the VLDB Endowment,2017,10(10):1010-1021. [26]GUO L,WEN Y,LIU F.Location perspective-based neighborhood-aware POI recommendation in location-based social networks[J].Soft Computing,2019,23(22):11935-11945. [27]RAHMANI H A,ALIAANNEJADI M,AHMADIAN S,et al.LGLMF:local geographical based logistic matrix factorization model for POI recommendation[C]//Information Retrieval Technology:15th Asia Information Retrieval Societies Confe-rence(AIRS 2019).Hong Kong,China,Springer,2020:66-78. [28]YU D,WANYAN W,WANG D.Leveraging contextual influence and user preferences for point-of-interest recommendation[J].Multimedia Tools and Applications,2021,80(1):1487-1501. [29]DAI S,YU Y,FAN H,et al.Personalized poi recommendation:spatio-temporal representation learning with social tie[C]//Database Systems for Advanced Applications:26th International Conference(DASFAA 2021).Taipei,Taiwan,Part I 26.Springer International Publishing,2021:558-574. |
|