计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200116-8.doi: 10.11896/jsjkx.240200116

• 大数据&数据科学 • 上一篇    下一篇

基于相似性增强传播结构的谣言检测

林熠笛, 李弼程, 杨海君   

  1. 华侨大学计算机科学与技术学院 福建 厦门 361021
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李弼程(lbclm@163.com)
  • 作者简介:(22014083038@stu.hqu.edu.cn)
  • 基金资助:
    装备预研教育部联合基金项目(8091B022150)

Rumor Detection Based on Similarity-enhanced Propagation Structure

LIN Yidi, LI Bicheng, YANG Haijun   

  1. College of Computer Science and Technology,Huaqiao University,Xiamen,Fujian 361021,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LIN Yidi,born in 2000,postgraduate.His main research interests include na-tural language processing and graph neural network.
    LI Bicheng,born in 1970,Ph.D,professor,Ph.D supervisor.His main research interests include intelligent information processing,network ideological security,network public opinion monitoring and guidance,and big data analysis and mining.
  • Supported by:
    Joint Fund Project of Ministry of Education for Equipment Pre-research(8091B022150).

摘要: 社交媒体的快速崛起引发了谣言传播问题,对社会造成负面影响。现有的谣言检测算法主要关注新闻内容和传播结构,却往往忽视了用户偏好的相似性可能带来的潜在影响。在浏览帖文时,用户更容易接触到与自己具有相似偏好的其他用户所传播的信息,从而助长谣言的传播。此外,现有研究常常忽视了传播结构的多样性,也忽视了新闻内容与其传播结构之间的关联。不同类型的新闻应具备不同的传播模式。因此,本文提出了一种名为“SEPS”的模型,旨在在偏好相似用户之间建立联系,再将传播结构划分为多种形式,以提取不同传播模式的特征。最后,引入对比学习和共注意力模块,增强了新闻内容和传播结构之间的相关性。实验证明,“SEPS”模型能有效检测谣言,其性能超越了最佳基线模型。

关键词: 谣言传播, 传播结构, 用户偏好, 传播模式, 相关性

Abstract: The rapid rise of social media has led to the issue of rumor dissemination,causing negative impacts on society.Existing rumor detection algorithms mainly focus on the contents and propagation structures of news,but often overlook the potential influence of user preference similarity.When browsing posts,users are more likely to encounter information spreaded by other users with similar preferences,which can further fuel the spread of rumors.Moreover,existing research frequently neglects the diversity of propagation structures and the relationship between news content and its propagation structure.Different types of news should exhibit different propagation patterns.Therefore,this paper proposes a model named “SEPS”,which aims to establish connections between users with similar preferences and then categorize propagation structures into various forms to extract features of diffe-rent propagation patterns.Finally,by introducing contrastive learning and co-attention modules,the model enhances the correlation between news content and propagation structure.Experiments demonstrate that the “SEPS” model can effectively detect rumors,and its performance outperforms that of the best baseline models.

Key words: Rumor propagation, Propagation structure, User preferences, Propagation patterns, Relevance

中图分类号: 

  • TP391
[1]ACEMOGLU D,OZDAGLAR A,SIDERIUS J.Misinforma-tion:Strategic sharing,homophily,and endogenous echo chambers[M].National Bureau of Economic Research,2021.
[2]CINELLI M,DE FRANCISCI M G,GALEAZZI A,et al.Theecho chamber effect on social media[J].Proceedings of the National Academy of Sciences,2021,118(9):e2023301118.
[3]MA J,GAO W,WONGK F.Rumor Detection on Twitter with Tree-structured Recursive Neural Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computa-tional Linguistics(Volume 1:Long Papers).2018:1980-1989.
[4]WU K,YANG S,ZHUK Q.False rumors detection on sina weibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:651-662.
[5]ZHOU X,WU J,ZAFARANI R.Similarity-Aware Multi-mo-dal Fake News Detection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer International Publishing,2020:354-367.
[6]ZHANG Y,WALLACE B C.A Sensitivity Analysis of(andPractitioners' Guide to) Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing(Vo-lume 1:Long Papers).2017:253-263.
[7]KALIYAR R K,GOSWAMI A,NARANG P.FakeBERT:Fakenews detection in social media with a BERT-based deep learning approach[J].Multimedia Ţools and Applications,2021,80(8):11765-11788.
[8]KENTON J D M W C,TOUTANOVAL K.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT.2019:4171-4186.
[9]CHEN T,LI X,YIN H,et al.Call attention to rumors:Deep at-tention based recurrent neural networks for early rumor detection[C]//Trends and Applications in Knowledge Discovery and Data Mining:PAKDD 2018 Workshops.Springer International Publishing,2018:40-52.
[10]MA J,GAO W,WONGK F.Detect rumors on twitter by promoting information campaigns with generative adversarial learning[C]//The World Wide Web Conference.2019:3049-3055.
[11]MA J,GAO W.Debunking Rumors on Twitter with Tree Trans-former[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:5455-5466.
[12]MONTI F,FRASCA F,EYNARD D,et al.Fake news detection on social media using geometric deep learning[J].arXiv:1902.06673,2019.
[13]HAN Y,KARUNASEKERA S,LECKIE C.Graph neural net-works with continual learning for fake news detection from social media[J].arXiv:2007.03316,2020.
[14]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[15]MATSUMOTO H,YOSHIDA S,MUNEYASU M.Propagation-based fake news detection using graph neural networks with transformer[C]//2021 IEEE 10th Global Conference on Consumer Electronics(GCCE).IEEE,2021:19-20.
[16]SONG C,SHU K,WU B.Temporally evolving graph neural network for fake news detection[J].Information Processing & Management,2021,58(6):102712.
[17]SILVA A,HAN Y,LUO L,et al.Propagation2Vec:Embeddingpartial propagation networks for explainable fake news early detection[J].Information Processing & Management,2021,58(5):102618.
[18]DOU Y,SHU K,XIA C,et al.User preference-aware fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:2051-2055.
[19]WEI L,HU D,ZHOU W,et al.Towards Propagation Uncer-tainty:Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:3845-3854.
[20]ZHENG J,ZHANG X,GUO S,et al.MFAN:Multi-modal Feature-enhanced Attention Networks for Rumor Detection[C]//IJCAI,2022:2413-2419.
[21]BIAN T,XIAO X,XU T,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:549-556.
[22]GONG S,SINNOTT R O,QI J,et al.Fake News DetectionThrough Temporally Evolving User Interactions[C]//Pacific-Asia Cnference on Knowledge Discovery and Data Mining.Cham:Springer Nature Switzerland,2023:137-148.
[23]YUAN C,MA Q,ZHOU W,et al.Jointly embedding the local and global relations of heterogeneous graph for rumor detection[C]//2019 IEEE International Conference on Data Mining(ICDM).IEEE,2019:796-805.
[24]WU Y,ZHAN P,ZHANG Y,et al.Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics(ACL-IJCNLP 2021).2021:2560-2569.
[25]SHU K,MAHUDESWARAN D,WANG S,et al.Fakenewsnet:A data repository with news content,social context,and spatiotemporal information for studying fake news on social media[J].Big Data,2020,8(3):171-188.
[26]YING R,YOU J,MORRIS C,et al.Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:4805-4815.
[27]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[J].Stat,2018,1050:4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!