计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 362-373.doi: 10.11896/jsjkx.240300009
何元康1, 马海龙1,2, 胡涛1, 江逸茗1,2, 张鹏1, 梁浩1
HE Yuankang1, MA Hailong1,2, HU Tao1, JIANG Yiming1,2, ZHANG Peng1, LIANG Hao1
摘要: 在流量检测领域,基于对抗训练的对抗样本防御方法需要大量对抗样本且训练后会降低对原始数据的识别准确率。针对该问题,提出了一种基于特征迁移的流量对抗样本防御方法,该方法结合了增强模型鲁棒性和隐藏对抗样本空间两种防御思路,由具有降噪功能的底层防御模块和具有识别功能的识别模块组成。首先,使用堆叠自编码器作为底层防御模块进行对抗知识学习,使其拥有对抗样本特征提取能力;其次,根据流量特征进行功能自适应构造,使用非对抗流量对识别模块进行训练从而获得识别能力。通过防御+识别功能的拆分,降低了防御成本消耗并减少了对抗训练对原始数据识别准确率的影响,实现了快速适配且提高了模型防御弹性,对新的对抗样本的识别准确率提升至40%左右。
中图分类号:
[1]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-BasedLearning Applied to Document Recognition[J].The IEEE,1998,86(11):2278-2324. [2]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[J].arXiv:1312.6199,2013. [3]SHARON Y,BEREND D,LIU Y,et al.Tantra:Timing-based adversarial network traffic reshaping attack[J].IEEE Transactions on Information Forensics and Security,2022,17:3225-3237. [4]ZHENG Y,DANG Z,PENG C,et al.Multi-view Multi-labelAnomaly Network Traffic Classification based on MLP-Mixer Neural Network[J].arXiv:2210.16719,2022. [5]YU Y,BIAN N.An intrusion detection method using few-shot learning[J].IEEE Access,2020,8:49730-49740. [6]SHU D,LESLIE N O,KAMHOUA C A,et al.Generative adversarial attacks against intrusion detection systems using active learning[C]//Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning.2020:1-6. [7]MACHADO G R,SILVA E,GOLDSCHMIDT R R.Adversarial machine learning in image classification:A survey toward the defender's perspective[J].ACM Computing Surveys(CSUR),2021,55(1):1-38. [8]RUST-NGUYEN N,SHARMA S,STAMP M.Darknet Traffic Classification and Adversarial Attacks Using Machine Learning[J].Computers & Security,2023,127:103098. [9]CHENG Q,ZHOU S,SHEN Y,et al.Packet-level adversarial network traffic crafting using sequence generative adversarial networks[J].arXiv:2103.04794,2021. [10]CHERNIKOVA A,OPREA A.Fence:Feasible evasion attacks on neural networks in constrained environments[J].ACM Transactions on Privacy and Security,2022,25(4):1-34. [11]SADEGHZADEH A M,SHIRAVI S,JALILI R.Adversarialnetwork traffic:Towards evaluating the robustness of deep-learning-based network traffic classification[J].IEEE Transactions on Network and Service Management,2021,18(2):1962-1976. [12]NOVO C,MORLA R.Flow-based detection and proxy-based evasion of encrypted malware c2 traffic[C]//Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security.2020:83-91. [13]HUANG W,PENG X,SHI Z,et al.Adversarial attack against LSTM-based DDoS intrusion detection system[C]//2020 IEEE 32nd International Conference on Tools with Artificial Intelligence(ICTAI).IEEE,2020:686-693. [14]CHEN J Y,WU C A,ZHENG H B.Novel defense based onsoftmax activation transformation[J].Chinese Journal of Network and Information Security,2022,8(2):48-63. [15]ROSS A,DOSHI-VELEZ F.Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [16]PAPERNOT N,MCDANIEL P,WU X,et al.Distillation as adefense to adversarial perturbations against deep neural networks[C]//2016 IEEE Symposium on Security and Privacy(SP).IEEE,2016:582-597. [17]MCCARTHY A,GHADAFI E,ANDRIOTIS P,et al.Defending against adversarial machine learning attacks using hierarchical learning:A case study on network traffic attack classification[J].Journal of Information Security and Applications,2023,72:103398. [18]CHEN S H,SHEN H J,WANG R,et al.Relationship Between Prediction Uncertainty and Adversarial Robustness[J].Journal of Software,2022,33(2):524-538. [19]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [20]WANG B,GUO Y K,QIAN Y G,et al.Defense of Traffic Classifiers based on Convolutional Networks against Adversarial Examples[J].Journal of Cyber Security,2022,7(1):145-156. [21]HASHEMI M J,KELLER E.Enhancing robustness against ad-versarial examples in network intrusion detection systems[C]//2020 IEEE Conference on Network Function Virtualization and Software Defined Networks(NFV-SDN).IEEE,2020:37-43. [22]SAHA S,HAQUE A,SIDEBOTTOM G.Transfer learningbased efficient traffic prediction with limited training data[C]//2023 IEEE 20th Consumer Communications & Networking Conference(CCNC).IEEE,2023:477-480. [23]WAN X,LIU H,XU H,et al.Network traffic prediction based on LSTM and transfer learning[J].IEEE Access,2022,10:86181-86190. [24]BIERBRAUER D A,DE LUCIA M J,REDDY K,et al.Transfer learning for raw network traffic detection[J].Expert Systems with Applications,2023,211:118641. [25]DEBICHA I,BAUWENS R,DEBATTY T,et al.TAD:Transfer learning-based multi-adversarial detection of evasion attacks against network intrusion detection systems[J].Future Generation Computer Systems,2023,138:185-197. [26]SHARAFALDIN I,LASHKARI A H,GHORBANI A A.Toward generating a new intrusion detection dataset and intrusion traffic characterization[J].ICISSp,2018,1:108-116. |
|