计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 562-570.doi: 10.11896/jsjkx.210700106
周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧
ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao
摘要: 随着车联网中车载装备智能化程度的飞速发展,其与互联网对接的程度日益加深,而车载CAN总线受到的网络攻击数量更多、攻击方式更复杂、攻击特征更隐蔽。目前车联网入侵检测才刚起步,基于防火墙或规则库等传统检测模型无法获取隐藏的深层攻击特征,基于深度学习的智能检测模型又因训练参数多、攻击数据不均衡等呈现过/欠拟合以及训练复杂等问题。针对以上问题,文中以车载CAN总线为对象,提出了一种基于SMOTE-SDSAE-SVM的CAN总线入侵检测方法(简称3S),尝试结合深度学习和机器学习理论,从而同时提取网络攻击的深度特征和保证模型训练的高效性,并解决网络攻击类别不平衡、CAN报文含噪声等问题。首先,为了解决网络攻击类别不平衡问题,利用SMOTE技术对不平衡类别的攻击数据进行近邻采样,从而生成更多同类别近似样本;其次,结合稀疏自编码和去噪自编码,以消除噪声数据的影响同时增加特征提取的时效性,并通过堆叠多层稀疏去噪自编码最终实现CAN报文的深度特征提取;最后,利用SVM对提取的深度特征进行精确分类,实现对CAN报文的异常检测,从而发现网络攻击。通过在沃尔沃CAN数据集和CAR-HACKING数据集上的大量实验,有效证明了本文3S算法较其他算法而言拥有更好的入侵检测准确率和更低的漏报率/误报率。
中图分类号:
[1] QIAN Z H,WANG Y J.IoT technology and application[J].Acta Electronica Sinica,2012,40(5):1023-1029. [2] QIE G,ZHANG Y.Intelligent Connected Vehicle:A Survey of the Technical Analysis[J].Mobile Communications,2020,44(1):80-85. [3] LI K Q,DAI Y F,LI S B,et al.State-of-the-art and technical trends of intelligent and connected vehicles[J].Journal of Automotive Safety and Energy,2017,8(1):1-14. [4] XUN Y J,LIU J J,ZHAO J.Research on security threat of intelligent connected vehicle[J].Chinese Journal on Internet of Things,2019,3(4):72-81. [5] YANG D,JIANG K,ZHAO D,et al.Intelligent and connected vehicles:Current status and future perspectives[J].Science China-Technological Sciences,2018,61(10):1446-1471. [6] ALNABULSI H,ISLAM R.Protecting code injection attacks in intelligent transportation system[C]//Trust Security and Privacy in Computing and Communications.Piscataway:IEEE Press,2019:799-806. [7] HAO J,HAN G.On the Modeling of Automotive Security:ASurvey of Methods and Perspectives[J].Future Internet,2020,12(11):198. [8] MÜTER M,GROLL A,FREILING F C.A structured approach to anomaly detection for in-vehicle networks[C]//2010 Sixth International Conference on Information Assurance and Security(IAS).IEEE,2010:92-98. [9] HAN J,PEI J,KAMBER M.Data mining:concepts and techniques[M].San Francisco:Elsevier,2011. [10] GUO T,XU Z,YAO X,et al.Robust online time series prediction with recurrent neural networks[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).IEEE,2016:816-825. [11] TAYLOR A,LEBLANC S,JAPKOWICZ N.Anomaly detection in automobile control network data with long short-term memory networks[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).IEEE,2016:130-139. [12] LIANG J,CHEN J,ZHANG X,et al.One-hot encoding and convolutional neural network based anomaly detection[J].Journal Tsinghua University(Science & Technology),2019,59(7):523-529. [13] ZHU F,WU W,FU Y C,et al.A Dual Deep Network Based Secure Deep Reinforcement Learning Method[J].Chinese Journal of Computers,2019,42(8):1-15. [14] AN T L,WANG C D,YANG C.Research on vehicle bus anomaly detection based on LSTM[J].Journal of Tianjin University of Technology,2020,36(3):6-10. [15] LIU X Q,SHAN C,REN J D,et al.An intrusion detection method based on multi-dimensional optimization of traffic anomaly analysis[J].Netinfo Security,2019,4(1):14-26. [16] LI L J,YU Y,BAI S S,et al.Intrusion Detection Model Based on Double Training Technique[J].Transactions of Beijing Institute of Technology,2017(12):1246-1252. [17] CHAWALA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357. [18] LIN Y.Research on fusion algorithm of extreme learning machine and auto-encoder [D].Changchun:Jilin University,2016. [19] PARK S,SEO S,KIM J.Network intrusion detection usingstacked denoising autoencoder[J].Advanced Science Letters,2017,23(10):9907-9911. [20] VINCENT P,LATOCHELLE H,LAJOIE I,et al.Stacked denoising auto-encoders:learning useful representations in a deep network with a local denoising criterion[J].The Journal of Machine Learning Research,2010,11(12):3371-3408. [21] SUN W J,SHAO S Y,ZHAO R,et al.A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J].Measurement,2016,89:171-178. [22] XING C,MA L,YANG X Q.Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J].Journal of Sensors,2016,2016:1-10. [23] ANDREAS T.Anomaly detection in recordings from in-vehicle networks[J].Big Data and Applications,2014(3):23-29. [24] CRISTIANINI N,TAYLOR J S.An introduction to supportvector machines and other kernel-based learning methods[M].Beijing:Publishing House of Electronics Industry,2004. [25] AMARNATH B,BALAMURUGAN S A A.Review on feature se-lection techniques and its impact for effective data classification using UCI machine learning repository dataset[J].Journal of Engineering Science and Technology,2016,11(11):1639-1646. [26] MOUSTAFA N,SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C]//Proceedings of the 2015 Military Communications and Information Systems Conference.Canberra,ACT,Australia:IEEE,2015:1-6. [27] GOH J,ADEPU S,JUNEJO K N,et al.A dataset to support research in the design of secure water treatment systems[C]//International Conference on Critical Information Infrastructures Security.Cham:Springer,2016:88-99. [28] AHMED C M,PALLETI V R,MATHUR A P.WADI:a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks.2017:25-28. |
[1] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[6] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[7] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[8] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[9] | 刘卫明, 安冉, 毛伊敏. 基于聚类和WOA的并行支持向量机算法 Parallel Support Vector Machine Algorithm Based on Clustering and WOA 计算机科学, 2022, 49(7): 64-72. https://doi.org/10.11896/jsjkx.210500040 |
[10] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[11] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[12] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[13] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[14] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[15] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
|