计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300056-6.doi: 10.11896/jsjkx.240300056

• 交叉&应用 • 上一篇    下一篇

多翼瞬态混沌系统及有限时间同步研究

杨阳1, 摆玉龙2, 李艳1, 霍婷婷1   

  1. 1 宁夏师范大学物理与电子信息工程学院 宁夏 固原 756000
    2 西北师范大学物理与电子工程学院 兰州 730070
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 杨阳(yangyang@nxnu.edu.cn)
  • 基金资助:
    国家自然科学基金(42371377);宁夏师范大学固体微结构与功能重点实验室

Study on Multi-wing Transient Chaotic Systems and Finite Time Synchronization

YANG Yang1, BAI Yulong2, LI Yan 1, HUO Tingting1   

  1. 1 School of Physics and Electronic Information Engineering,Ningxia Normal University,Guyuan,Ningxia 756000,China
    2 School of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:YANG Yang,born in 1995,master,assistant professor.Her main research interests include nonlinear circuit and signal processing.
  • Supported by:
    National Natural Science Foundation of China(42371377) and Ningxia Normal University Key Laboratory of Solid Microstructure and Function.

摘要: 构造了一种能够产生多翼吸引子的三维混沌系统。通过对系统的相图、Lyapunov指数谱、分岔图和复杂度分析发现,该系统表现出复杂的动力学特性。通过研究多组参数发现,该系统存在丰富多样的多翼吸引子,且吸引子的拓扑结构由四翼转变为双翼,再转变为四翼的形式。此外,系统存在瞬态和吸引子共存现象。利用Multisim对系统进行模拟电路仿真,实验结果与数值分析结果相吻合,验证了混沌系统的可实现性。最后,基于有限时间理论,设计了同步控制器,实现了不同结构系统的有限时间同步,为混沌保密通信提供了良好的基础。

关键词: 多翼吸引子, 瞬态混沌, 共存吸引子, 电路仿真, 有限时间同步

Abstract: A three-dimensional chaotic system that can generate multi-wing attractors is constructed.Through the analysis of the phase portraits,Lyapunov exponent spectra,bifurcation diagrams,and complexity,it is found that the system exhibits complex dynamical characteristics.By studying multiple sets of parameters,it is discovered that the system exhibits diverse multi-wing attractors,and the topological structure of the attractors changes from four-wing to double-wing,and then back to four-wing.In addition,the system exhibits coexistence of transients and attractors.Multisim is used to perform circuit simulations of the system,and the experimental results are consistent with the numerical analysis,verifying the feasibility of the chaotic system implementation.Finally,based on the finite time theory,a synchronization controller is designed to realize the finite time synchronization of different structures,which provides a good basis for chaotic secure communication.

Key words: Multi-wing attractor, Transient chaos, Coexisting attractor, Circuit simulation, Finite time synchronization

中图分类号: 

  • O415.5
[1]TARASOVA V,TARASOVVE.Logistic map with memoryfrom economic model[J].Chaos,Solitons & Fractals,2017,95(1):84-91.
[2]XIANG N,WU Q,WAN A.Spatiotemporal patterns of a diffusive plant-herbivore model with toxin-determined functional responses:Multiple bifurcations[J].Mathematics and Computers in Simulation,2021,187(C):337-356.
[3]LI G Z,TAN N L,SU S Q,et al.Unknown frequency weak signal detection based on Lorenz chaotic synchronous system [J].Vibration and Impact,2019,38(5):155-161.
[4]VAIDYANATHAN S,AKGUL A,KAA S,et al.A new 4-Dchaotic hyperjerk system,its synchronization,circuit,design and applications in RNG image encryption and chaos based steganography [J].The European Physical Journal Plus,2018,133(2):46-50.
[5]SANDUBETE J,ESCOT L.Chaotic signals inside some tick-by-tick financial time series[J].Chaos,Solitons and Fractals:the Interdisciplinary Journal of Nonlinear Science,and Nonequili-brium and Complex Phenomena,2020,137(C):109852.
[6]YANG L,YANG Q G,CHEN G R.Hidden attractors,singularly degenerate heteroclinic orbits,multistability and physical realiz-ation of a new 6D hyperchaotic system [J].Communications in Nonlinear Science and Numerical Simulation,2020,90(12):1-16.
[7]BAI Y L,YANG Y,TANG L H.Design of a new multi-scroll chaotic system and its application to image encryption [J].Journal of Electronics and Information Technology,2019,43(2):436-444.
[8]LI C,SPROTT J C,HU W,et al.Infinite Multistability in aSelf-Reproducing Chaotic System[J].International Journal of Bifurcation & Chaos,2017,27(10):175-160.
[9]XIAN Y J,FU K R,XU C B.A four-dimensional multistablehyperchaotic system with multi-wing attractors[J].Journal of Vibration and Shock,2021,40(1):15-22,38.
[10]ZHANG S,LI C B,ZHENG J H,et al.Generating any number of initial offset-boosted coexisting chua's double-scroll attrac-tors via piecewise-nonlinear memristor[J].IEEE Transactions on Industrial Electronics,2021,69(7):7202-7212.
[11]ZHANG S,LI C B,ZHENG J H,et al.Enerating any number of diversified hidden attractors via memristor coupling[J].IEEE transactions on circuits and systems,I.Regular papers:a publication of the IEEE Circuits and Systems Society,2021,68(12):4945-4956.
[12]LAI Q,AKGUL A,ZHAO X W,et al.Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System[J].International Journal of Bifurcation & Chaos,2017,27(9):142-150.
[13]ZHANG S,ZENG Y,LI Z,et al.Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability[J].Chaos,2018,28(1):013113.
[14]DU C,LIU L,ZHANG Z,et al.Double memristors oscillatorwith hidden stacked attractors and its multi-transient and multistability analysis[J].Chaos Solitons & Fractals,2021,148(1):111023.
[15]GU S,DU B,WAN Y.A New Four-Dimensional Non-Hamiltonian Conservative Hyperchaotic System[J].International Journal of Bifurcation and Chaos,2020,30(16):1-23.
[16]ZHANG Z F,HUANG LL,XIANG J H,et al.Dynamics of a new five-dimensional conserved hyperchaotic system with a wide parameter range [J].Journal of Physics,2021,70(23):128-138.
[17]ZHAO G,WU Y,MA Y J,et al.Three-dimensional OFDM constellation encryption scheme based on disturbed space-time chaos [J].Computer Science,2024,51(5):390-399.
[18]ZHAO Y F,SHEN Y Z,DU C B.Characteristic analysis of singular non-chaotic attractors for a class of almost period-driven piecewise smooth systems [J/OL].Complex Systems and Complexity Science,2024,21(2):75-79.
[19]BAI Y L,LI X F,PAN W S.The design of a four-wing chaotic system and the application of synchronous control in weak signal detection[J].Physica Scripta.2022,97(11):115206.
[20]YAN S H,WANG E T,SUN X,et al.A chaotic system with attractor Coexistence and its synchronization circuit implementation[J].Journal of Shenzhen University(Science Technology),2021,38(6):649657.
[21]KENGNE J,TABEKOUENG Z N,TAMBA V K,et al.Periodicity,chaos,and multiple attractors in a memristor-based Shinriki's circuit[J].Chaos,2015,25(10):103-126.
[22]WU H,BAO B,LIU Z,et al.Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator [J].Nonlinear Dynamics,2016,83(1/2):893-903.
[23]BAO B C H,YU J J,HU F W,et al.Generalized Memristor Consisting of Diode Bridge with First Order Parallel RC Filter[J].International Journal of Bifurcation and Chaos,2014,24(11):1450143.
[24]MISHRA AMIT K,DAS S,YADAV VIJAY K.Finite-timesynchronization of multi-scroll chaotic systems with sigmoid non-linearity and uncertain terms[J].Chinese Journal of Physics,2020,75:235-245.
[25]SHAO K Y,HAN F,GUO S X,et al.Finite-time Synchronization of A Class of Fractional-order Hyperchaotic System [J].Control and Instruments in Chemical Industry,2018,45(1):1-4,22.
[26]DONG W,WANG C,ZHANG H L,et al.Finite time combination-combinatorial synchronization and its application for heterogeneous hyperchaotic systems[J].Journal of System Simulation,2023,35(7):1590-1601.
[27]YANG S H,WANG E T,GU B X,et al.Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos[J].Physica A:Statistical Mechanics and its Applications,2022,602:127652.
[28]WU S F.Finite-time synchronization of fractional multi-wingchaotic system [J].Physica Scripta,2023,98(11):115224.
[29]AHMAD I,OUANNAS A,SHAFIQ M,et al.Finite-Time Stabilization of a Perturbed Chaotic Finance Model[J].Journal of Advanced Research,2021,6(13):1-14.
[30]WANG C Y,DI J H,MAO B H.Adaptive sliding mode synchronization of fractional-order chaotic systems in uncertain atmospheres [J].Journal of Jilin University(Science Edition),2022,60(2):439-444.
[31]CHEN S,ZHANG F C,XIAO M.Analysis and synchronization control of a Complex chaotic System [J/OL].Systems Science and Mathematics,2024,44(5):1311-1323.
[32]WANG Q,LIU H.Adaptive fuzzy sliding mode finite time synchronization control for fractional-order chaotic systems with different dimensions [J].Fuzzy Systems and Mathematics,2019,37(2):1-12.
[33]LUIGI D,GIUSEPPE F,PAOLO P.Robust output tracking,disturbance attenuation and synchronization for a class of Lur'e systems:a high-gain,fractional-order control approach[J].Nonlinear Dynamics,2023,112(2):1011-1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!