计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300108-5.doi: 10.11896/jsjkx.240300108

• 大数据&数据科学 • 上一篇    下一篇

平均近似精度的性质和应用

张夏苇1, 孔庆钊2   

  1. 1 厦门理工学院数学与统计学院 福建 厦门 361024
    2 集美大学理学院 福建 厦门 361021
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 孔庆钊(kongqingzhao@163.com)
  • 基金资助:
    福建省自然科学基金(2020J01707)

Properties and Applications of Average Approximation Accuracy

ZHANG Xiawei1, KONG Qingzhao2   

  1. 1 School of Mathematics and Statistics,Xiamen University of Technology,Xiamen,Fujian 361024,China
    2 College of Science,Jimei University,Xiamen,Fujian 361021,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:ZHANG Xiawei,born in 1981,master,associate professor.Her main research interests include granular computing,artificial intelligence and network diagnostic.
    KONG Qingzhao,born in 1978,Ph.D,associate professor.His main research interests include granular computing and artificial intelligence.
  • Supported by:
    Natural Science Foundation of Fujian Province,China(2020J01707).

摘要: 平均近似精度是粗糙集理论中新近提出的一个重要概念。首先分析平均近似精度的数学结构,给出平均近似精度一种新的解释;然后重点讨论平均近似精度的若干重要性质,相比传统方法,其能更有效地刻画粗糙集模型知识表示的能力;最后,探讨平均近似精度在不完备信息表和特征选择两方面的应用。这些研究成果丰富了粗糙集理论的内容,扩展了粗糙集理论在实际问题中的应用。

关键词: 粗糙集, 近似精度, 属性约简, 不完备信息表

Abstract: Average approximation accuracy is an important concept in rough set theory,which has only been proposed in recent years.In this paper,the mathematical structure of average approximation accuracy is first analyzed,and another new explanation for average approximation accuracy is provided.Then,we focus on discussing several important properties of average approximation accuracy,and find that average approximation accuracy can characterize the knowledge representation ability of rough set models more effectively than traditional methods.Finally,the applications of average approximation accuracy in incomplete information tables and feature selection are discussed,respectively.These research achievements will enrich the content of rough set theory and expand its application in practical problems.

Key words: Rough set, Approximation accuracy, Attribute reduction, Incomplete information table

中图分类号: 

  • TP182
[1]ZADEH L.Fuzzy sets [J].Information and Control,1965,8:338-353.
[2]RAMESH DHANASEELAN F,JEYA SUTHA M.Detection of breast cancer based on fuzzy frequent itemsets mining [J].IRBM,2021,42(3):198-206.
[3]LEE H,HSIEH C J,LEE J S.Local critic training for model-parallel learning of deep neural networks [J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4424-4436.
[4]ZHANG B,ZHANG L.Theory and applications of problem sol-ving [M].North Holland Publishing,Amsterdam,1992.
[5]YAO Y Y.Three-way decisions with probabilisticrough sets[J].Information Sciences,2010,180(3):341-353.
[6]YAO Y Y.Three-way decision and granular computing [J].International Journal of Approximate Reasoning,2018,103:107-123.
[7]PAWLAK Z.Rough sets [J].International Journal of Computing and Information Science,1982,11(5):341-356.
[8]KONG Q Z,ZHANG X W,XU W H,et al.A novel granular computing model based on three-way decision [J].International Journal of Approximate Reasoning,2022,144:92-112.
[9]KONG Q Z,ZHANG X W,XU W H,et al.Attribute reducts of multi-granulation information system [J].Artificial Intelligence Review,2020,53(2):1353-1371.
[10]XU W H,HUANG M,JIANG Z Y,et al.Graph-based unsupervised feature selection for interval-valued information system [J/OL].https://doi.org/10.1109/TNNLS.2023.3263684.
[11]KONG Q Z,CHANG X E.Rough set model based on variableuniverse [J].CAAI Transactions on Intelligence Technology,2022,7(3):503-511.
[12]KONG Q Z,XU W H,ZHANG D X.A comparative study of different granular structures induced from the information systems [J].Soft Computing,2022,26(1):105-122.
[13]KONG Q Z,CHANG X E.Two kinds of average approximation accuracy [J].CAAI Transactions on Intelligence Technology,2024,9(2):481-490.
[14]PAWLAK Z.Information systems theoretical foundations [J].Information Systems,1981,6(3):205-218.
[15]WIERMAN M J.Measuring uncertainty in rough set theory[J].International Journal of General Systems,1999,28(4/5):283-297.
[16]PAWLAK Z.Rough sets.Theoretical aspects of reasoning about data [M].Kluwer Academic Publishers,Dordrecht,1991.
[17]MI J S,WU W Z,ZHANG W X.Approaches to knowledge reduction based on variable precision rough set model [J].Information Sciences,2004,159(3/4):255-272.
[18]MIAO D Q,ZHAO Y,YAO Y Y,et al.Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model [J].Information Sciences,2009,179(24):4140-4150.
[19]WANG F,LIANG J Y,QIAN Y H.Attribute reduction:a dimension incremental strategy [J].Knowledge-Based Systems,2013,39:95-108.
[20]YANG Y Y,CHEN D G,DONG Z.Novel algorithms of attri-bute reduction with variable precision rough set model [J].Neurocomputing,2014,139:336-344.
[21]YUAN J L,CHEN M,JIANG T,et al.Complete tolerance relation based parallel filling forincomplete energy big data[J].Knowledge-Based Systems,2017,132:215-225.
[22]CHEN J,SHAO J.Jackknife variance estimation for nearest-neighbor imputation [J].Journal of the American Statistical Association.2001,96(453):260-269.
[23]SALAMA A S,El-BARBARY O G.Topological approach to retrieve missing values in incomplete information systems [J].Journal of the Egyptian Mathematical Society,2017,25:419-423.
[24]ZHOU X Z,HUANG B,LI H X,et al.Rough set theory andmethod for knowledge acquisition in incomplete information systems[D].Nanjing:Nanjing University Press,2010.
[25]HU X,ZHANG H,YANG C M,et al.Regularized spectral clustering with entropy perturbation [J].IEEE Transactions on Big Data,2021,7(6):967-972.
[26]KONG Q Z,WANG W T,XU W H,et al.A method of dataanalysis based on division-mining-fusion strategy [J].Information Sciences,2024,666:120450.
[27]JENSEN R,QIANG S.Semantics-preserving dimensionality reduction:rough and fuzzy-rough-based approaches [J].IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1457-1471.
[28]YAO Y Y.Interpreting concept learning in cognitive informatics and granular computing [J].IEEE Transactions on Systems Man and Cybernetics B,2009,39(4):855-866.
[29]ZHANG J B,LI T R,RUAN D,et al.A parallel method forcomputing rough set approximations [J].Information Sciences,2012,194:209-223.
[30]XU W H,YUAN K H,LI W T,et al.An emerging fuzzy feature selection method using composite entropy-based uncertainty measure and data distribution [J].IEEE Transactions on Emerging Topics in Computational Intelligence,2023,7(1):76-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!