计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300120-6.doi: 10.11896/jsjkx.240300120

• 交叉&应用 • 上一篇    下一篇

基于小生境算法的空气质量模糊认知图预测

韩慧健1,2,3, 刘可鑫1,2, 林雪1,2   

  1. 1 山东财经大学计算机科学与技术学院 济南 250014
    2 山东省数字媒体技术重点实验室 济南 250014
    3 山东省信息可视化与计算机工程技术研究中心 济南 250014
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 刘可鑫(kxliu1998@aliyun.com)
  • 作者简介:(hanhuijian@sdufe.edu.cn)
  • 基金资助:
    国家社会科学基金(22BSH020)

Air Quality Fuzzy Cognitive Map Forecasting Based on Niche Genetic Algorithm

HAN Huijian1,2,3, LIU Kexin1,2, LIN Xue1,2   

  1. 1 School of Computer Science,Shandong University of Finance and Economics,Jinan 250014,China
    2 Shandong Key Laboratory of Digital Media Technology,Jinan 250014,China
    3 Shandong Information Visualization and Computational Economic Technology Research Center,Jinan 250014,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:HAN Huijian,born in 1971,Ph.D,professor,M.S supervisor,is a member of CCF(No.21259S).His main research interests include information management,cognitive intelligence,and visual decision.
    LIU Kexin,bornin 1998,postgraduate.His main research interests include system recognition and forecast.
  • Supported by:
    National Social Science Fundation of China(22BSH020).

摘要: 工业化使得全球经济取得了突飞猛进的增长,但也使得环境污染愈发严重。大气污染成为世界各国讨论的话题。文中提出一种基于小生境遗传算法的改进形式的空气质量模糊认知图预测方法。利用模糊认知图表示空气污染物以及空气质量指数的关联关系,并应用改进的小生境遗传算法优化模型,使得训练结果更接近全局最优解。文中使用2015-2021年的空气数据训练模型,在2022年的数据集上测试模型。实验结果表明,与传统的遗传算法和BP神经网络相比,所提方法预测精度更高,且泛化性能更好,证明了其有效性。

关键词: 空气质量, 模糊认知图, 小生境遗传算法

Abstract: Industrialization has led to the rapid growth of global economy,but it has also made environmental pollution more and more serious.Air pollution has become a worldwide hot topic around the world.In this paper,an air quality fuzzy cognitive map forecasting method based on niche genetic algorithm is proposed.This method indicates the relationship of airpollutants and air quality index by using fuzzy cognitive map,and makes the training target moreclose to the global best solution by using modified niche genetic algorithm.The air quality data from 2015 to 2021 is used to train the model,and the model is tested on the 2022 data.Theresult indicates that compared to the traditional genetic algorithm and BP neural network,theproposed method has higher prediction accuracy and better generalization performance,which proves its effectiveness.

Key words: Air quality, Fuzzy cognitive map, Niche genetic algorithm

中图分类号: 

  • TP3-05
[1]LI G P,QIU Z B,MIAO J Q,et al.Air Quality Prediction Model Based on the LSTM[J].Journal of Southwest Minzu University(Natural Science Edition),2023,49(1):67-73.
[2]WANG C.Study on the Relationship Between Air Quality in Beijing and Meteorological Conditions and Its Prediction[D].Lanzhou:Lanzhou University,2018.
[3]FANG W,ZHU R S.Air Quality Prediction Model Based on Spatial-temporal Similarity LSTM[J].Application Research of Computers,2021,38(9):2640-2645.
[4]ZHANG J,WANG S G,DU L L,et al.Study on Predictionof AirQuality in Central and Southern Hebei Based on BP Neural Network[J].Acta Agriculturae Jiangxi,2019,31(5):96-102.
[5]SU H.Research on Air Quality Prediction Based on Improved BP Neural Network[D].Nanchang:Nanchang University,2020.
[6]LI Z G,QIN L L,FU D M.Air Quality Data Prediction Method Based on CRQA-DBN-ELM[J].Electronic Measurement Technology,2022,45(19):76-82.
[7]HAN X LI B Y,GUAN Z B.Atmospheric Quality Prediction Model Based on RBF Neural Network-Markov Chain of Grey Correlational Analysis Filter Indexes[J].Journal of Nankai University(Natural Science Edition),2013,46(2):22-27.
[8]MENG D,FAN C J,LU X D,et al.Application of Chaotic Genetic Neural Network to the Air Quality Forecast[J].Journal of Safety and Environment,2014,14(4):246-250.
[9]LI Q,QIAO D,LI B W.Analysis of Air Quality Prediction Model Based on T-S Fuzzy Neural Network[J].Inner Mongolia Coal Economy,2022(17):142-144.
[10]TOLMAN,EDWARD C.Cognitive Maps in Rats and Men[J].Psychological Review,1948,55(4):189.
[11]HAN HJ,SONG XF,ZHANG H.Fuzzy Cognitive Map Method for Forecasting Urban Water Demand[J].Computer Science,2019,46(S2):47-51.
[12]LI H,CHEN HQ,MA LY,et al.A Review of Algorithm Improvement and Application of Fuzzy Cognitive Map[J].Journal of Nanjing University(Natural Sciences),2016,52(4):746.
[13]SHANGGUAN Q Q.Research on Approaches of Air Quality Monitoring Data Prediction Based on Fuzzy Cognitive Maps[D].Beijing:Beijing Jiaotong University,2020.
[14]YANG YP,YAN HB,MA TJ.Evolutionary Analysis of Battery Electric Vehicle Based on Fuzzy Cognitive Map[J].Journal of Systems & Management,2018,27(2):359-365.
[15]LI W Z.Research on Enhanced Fuzzy Cognitive Map Method for Bank Credit Risk Control[D].Jinan:Shandong University of Finance and Economics,2022.
[16]KONG S,LIU L L,SHI Y W,et al.PID Control of Desulfurization Slurry pH Value Based on Improved Genetic Algorithm[J].Electric Engineering,2021(16):1-3.
[17]LIU P,YU H.An Improved Adaptive Genetic Algorithm[J].Ship Electronic Engineering,2021,41(6):101-104.
[18]MICHALWICZ Z,JANIKOW C Z,KRAWCZYK J B.A Modified Genetic Algorithm for Optimal Control Problems[J].Computers & Mathematics with Applications,1992,23(12):83-94.
[19]CHI Y X.Research on Intelligent Learning Algorithm and Application of Fuzzy Cognitive Maps[D].Xi'an:Xidian University,2017.
[20]XUN H F.Improved Genetic Algorithm Based on Real Coding and Its Application Optimization of Fuzzy Logic Controller[D].Taiyuan:Taiyuan University of technology,2009.
[21]HUO C J,WANG W R,YU K,et al.Theoretical Line LossForecast Based on Cascade Neural Network Optimized by Niche Genetic Algorithm[J].Science Technology and Engineering,2021,21(23):9897-9906.
[22]KONG Y F,JIA L X,ZHANG J.Voice Print Recognition Based on Wavelet Analysis and Niche Genetic Neural Network Algorithm[C]//20th CCSSTA.2019:523-526.
[23]CHEN C,LIU T,CHOU J.A Novel Crowding Genetic Algorithm and Its Applications to Manufacturing Robots[J].IEEE Transactions on Industrial Informatics,2014,10(3):1705-1716.
[24]CUI B L,XU G J,DA L L,et al.Shallow Sea Sound Speed Profile Inversion Based on Niche Genetic Algorithm[J].Journal of Applied Acoustics,2021,40(2):279-286.
[25]LI Q,LIU Z J,WANG W J,et al.Intelligent Optimization ofLead-bismuth Reactor Core Based on Radial Basis Function Surrogate Model and Niche Genetic Algorithm[J].Nuclear Power Engineering,2022,43(6):93-100.
[26]ZHU X N,ZHOU G J.Improved Niching Genetic Algorithm for Distribution Network Reconfiguration[J].Journal of Fujian Computer,2022,38(9):7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!