计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 212-219.doi: 10.11896/jsjkx.240300137

• 计算机图形学&多媒体 • 上一篇    下一篇

改进U-Net的多尺度特征融合遥感图像语义分割网络

姜文文, 夏英   

  1. 重庆邮电大学计算机科学与技术学院 重庆 400065
    旅游多源数据感知与决策技术文化和旅游部重点实验室 重庆 400065
  • 收稿日期:2024-03-20 修回日期:2024-07-22 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 夏英(xiaying@cqupt.edu.cn)
  • 作者简介:(S220231042@stu.cqupt.edu.cn)
  • 基金资助:
    重庆市教委重点合作项目(HZ2021008);文化和旅游部重点实验室资助项目(E020H2023005)

Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images

JIANG Wenwen, XIA Ying   

  1. College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    Key Laboratory of Tourism Multisource Data Perception and Decision Technology,Ministry of Culture and Tourism,Chongqing 400065,China
  • Received:2024-03-20 Revised:2024-07-22 Online:2025-05-15 Published:2025-05-12
  • About author:JIANG Wenwen,born in 2000,postgraduate.Her main research interests include intelligent analysis of remote sensing images.
    XIA Ying,born in 1972,Ph.D,professor,Ph.D supervisor,is a senior member of CCF(No.10248S).Her main research interests include spatiotemporal big data and cross-media retrieval.
  • Supported by:
    Chongqing Municipal Education Commission Cooperation Projects(HZ2021008) and Key Laboratory Funding Project of Cultural and Tourism Department(E020H2023005).

摘要: 遥感图像的空间分辨率高,不同类型对象的尺度差异大、类别不平衡,是精准语义分割任务所面临的主要挑战。为了提高遥感图像语义分割的准确性,提出了一种改进U-Net的多尺度特征融合遥感图像语义分割网络(Multi-scale Feature Fusion Network,MFFNet)。该网络以U-Net网络为基础,包含动态特征融合模块和门控注意力卷积混合模块。其中,动态特征融合模块代替跳跃连接,改进上采样层和下采样层的特征融合方式,避免特征融合导致信息丢失,同时提高浅层特征和深层特征的融合效果;门控注意力卷积混合模块通过整合自注意力、卷积和门控机制,更好地捕获局部和全局信息。在Potsdam和Vaihingen数据集上开展对比实验和消融实验,结果表明MFFNet在两个数据集上的mIoU分别达到76.95%和72.93%,有效提高了遥感图像的语义分割精度。

关键词: 语义分割, 遥感图像, 注意力机制, 特征融合, 门控机制

Abstract: High spatial resolution of remote sensing images,the large scale differences of different types of objects,and the imba-lance of categories are the main challenges faced by accurate semantic segmentation tasks.In order to improve the accuracy of semantic segmentation of remote sensing images,this paper proposes an improved U-Net multi-scale feature fusion semantic segmentation network for remote sensing image(Multi-scale Feature Fusion Network,MFFNet).The network is based on the U-Net network and includes a dynamic feature fusion module and a gated attention convolution mix module.Among them,the dynamic feature fusion module replaces the skip connection and improves the feature fusion method of the upsampling layer and the downsampling layer to avoid information loss caused by feature fusion,while improving the fusion effect of shallow features and deep features.Gated attention convolution mix module integrates self-attention,convolution,and gating mechanisms to better capture both local and global information.Comparative experiments and ablation experiments are carried out on Potsdam and Vaihingen.The results show that the mIoU of MFFNet on the two datasets reached 76.95% and 72.93% respectively,effectively improving the semantic segmentation accuracy of remote sensing images.

Key words: Semantic segmentation, Remote sensing images, Attention mechanism, Feature fusion, Gating mechanism

中图分类号: 

  • TP391
[1]WANG J,DING J,RAN S,et al.Automatic Pear Extractionfrom High-Resolution Images by a Visual Attention Mechanism Network[J].Remote Sensing,2023,15(13):3283-3298.
[2]MA Y.Research Review of Image Semantic Segmentation Methods in High-Resolution Remote Sensing Image Interpretation[J].Journal of Frontiers of ComputerScience and Technology,2023,17(7):1526-1548.
[3]ZHAN Z Y,AN Y J,C C W.Image Threshold Segmentation Algorithms and Comparative Research[J].Information and Communication,2017(4):86-89.
[4]LIANG Z X,WANG X B,HE T,et al.Research and implementation of instance segmentation and edge optimization algorithms[J].Journal of Graphics,2020,41(6):939-946.
[5]ADAMS R,BISCHOF L.Seeded region growing[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647.
[6]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440.
[7]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241.
[8]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[9]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890.
[10]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
[11]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[12]ZHENG S,LU J,ZHAO H,et al.Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers[C]//Computer Vision and Pattern Recognition.IEEE,2021:6877-6886.
[13]WANG S Y,YANG F.Remote Sensing Image Semantic Seg-mentation Method Based on U-Net Feature Fusion Optimization Strategy[J].Computer Science,2021,48(8):162-168.
[14]LI H,QIU K,CHEN L,et al.SCAttNet:Semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J].IEEE Geoscience and Remote Sensing Letters,2020,18(5):905-909.
[15]XU Z,ZHANG W,ZHANG T,et al.HRCNet:high-resolution context extraction network for semantic segmentation of remote sensing images[J].Remote Sensing,2020,13(1):71-93.
[16]YANG X,LI S,CHEN Z,et al.An attention-fused network for semantic segmentation of very-high resolution remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021(177):238-262.
[17]WANG Q,GUO L G,CHENG W T.A Method for Extracting Buildings from Remote Sensing Images Based on Lightweight NDFEDet-SOLOv2[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2024(6):20-29.
[18]LIU Y,SHI S,WANG J,et al.Seeing Beyond the Patch:Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:16868-16878.
[19]LIANG Y,YI C X,WANG G Y,et al.Semantic Segmentation of Remote Sensing Images Based on Multi-scale Semantic Encoder-Decoder Network[J].Acta Electronica Sinica,2023,51(11):3199-3214.
[20]LI X,HE H,LI X,et al.Pointflow:Flowing semantics through points for aerial image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4217-4226.
[21]YANG X,FAN X,PENG M,et al.Semantic segmentation for remote sensing images based on an AD-HRNet model[J].International Journal of Digital Earth,2022,15(1):2376-2399.
[22]MOU L,HUA Y,ZHU X X.Relation matters:Relational context-aware fully convolutional network for semantic segmentation of high-resolution aerial images[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(11):7557-7569.
[23]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154.
[24]XIE E,WANG W,YU Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090.
[25]LI R,ZHENG S,ZHANG C,et al.Multiattention network forsemantic segmentation of fine-resolution remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2020,60:1-13.
[26]SONG Q,LI J,LI C,et al.Fully attentional network for semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:2280-2288.
[27]LI R,WANG L B,ZHANG C,et al.A2-FPN for semantic segmentation of fine-resolution remotely sensed images[J].International Journal of Remote Sensing,2022,43(3):1131-1155.
[28]LI R,ZHENG S,DUAN C,et al.Land cover classification from remote sensing images based on multi-scale fully convolutional network[J].Geo-spatial Information Science,2022,25(2):278-294.
[29]ZHANG Y,YAO T,QIU Z F,et al.Lightweight and Progressively-Scalable Networks for Semantic Segmentation[J].International Journal of Computer Vision,2023,131:2153-2171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!