计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 212-219.doi: 10.11896/jsjkx.240300137
姜文文, 夏英
JIANG Wenwen, XIA Ying
摘要: 遥感图像的空间分辨率高,不同类型对象的尺度差异大、类别不平衡,是精准语义分割任务所面临的主要挑战。为了提高遥感图像语义分割的准确性,提出了一种改进U-Net的多尺度特征融合遥感图像语义分割网络(Multi-scale Feature Fusion Network,MFFNet)。该网络以U-Net网络为基础,包含动态特征融合模块和门控注意力卷积混合模块。其中,动态特征融合模块代替跳跃连接,改进上采样层和下采样层的特征融合方式,避免特征融合导致信息丢失,同时提高浅层特征和深层特征的融合效果;门控注意力卷积混合模块通过整合自注意力、卷积和门控机制,更好地捕获局部和全局信息。在Potsdam和Vaihingen数据集上开展对比实验和消融实验,结果表明MFFNet在两个数据集上的mIoU分别达到76.95%和72.93%,有效提高了遥感图像的语义分割精度。
中图分类号:
[1]WANG J,DING J,RAN S,et al.Automatic Pear Extractionfrom High-Resolution Images by a Visual Attention Mechanism Network[J].Remote Sensing,2023,15(13):3283-3298. [2]MA Y.Research Review of Image Semantic Segmentation Methods in High-Resolution Remote Sensing Image Interpretation[J].Journal of Frontiers of ComputerScience and Technology,2023,17(7):1526-1548. [3]ZHAN Z Y,AN Y J,C C W.Image Threshold Segmentation Algorithms and Comparative Research[J].Information and Communication,2017(4):86-89. [4]LIANG Z X,WANG X B,HE T,et al.Research and implementation of instance segmentation and edge optimization algorithms[J].Journal of Graphics,2020,41(6):939-946. [5]ADAMS R,BISCHOF L.Seeded region growing[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647. [6]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [7]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015:234-241. [8]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [9]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [10]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [11]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [12]ZHENG S,LU J,ZHAO H,et al.Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers[C]//Computer Vision and Pattern Recognition.IEEE,2021:6877-6886. [13]WANG S Y,YANG F.Remote Sensing Image Semantic Seg-mentation Method Based on U-Net Feature Fusion Optimization Strategy[J].Computer Science,2021,48(8):162-168. [14]LI H,QIU K,CHEN L,et al.SCAttNet:Semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J].IEEE Geoscience and Remote Sensing Letters,2020,18(5):905-909. [15]XU Z,ZHANG W,ZHANG T,et al.HRCNet:high-resolution context extraction network for semantic segmentation of remote sensing images[J].Remote Sensing,2020,13(1):71-93. [16]YANG X,LI S,CHEN Z,et al.An attention-fused network for semantic segmentation of very-high resolution remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021(177):238-262. [17]WANG Q,GUO L G,CHENG W T.A Method for Extracting Buildings from Remote Sensing Images Based on Lightweight NDFEDet-SOLOv2[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2024(6):20-29. [18]LIU Y,SHI S,WANG J,et al.Seeing Beyond the Patch:Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:16868-16878. [19]LIANG Y,YI C X,WANG G Y,et al.Semantic Segmentation of Remote Sensing Images Based on Multi-scale Semantic Encoder-Decoder Network[J].Acta Electronica Sinica,2023,51(11):3199-3214. [20]LI X,HE H,LI X,et al.Pointflow:Flowing semantics through points for aerial image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4217-4226. [21]YANG X,FAN X,PENG M,et al.Semantic segmentation for remote sensing images based on an AD-HRNet model[J].International Journal of Digital Earth,2022,15(1):2376-2399. [22]MOU L,HUA Y,ZHU X X.Relation matters:Relational context-aware fully convolutional network for semantic segmentation of high-resolution aerial images[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(11):7557-7569. [23]FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154. [24]XIE E,WANG W,YU Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090. [25]LI R,ZHENG S,ZHANG C,et al.Multiattention network forsemantic segmentation of fine-resolution remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2020,60:1-13. [26]SONG Q,LI J,LI C,et al.Fully attentional network for semantic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:2280-2288. [27]LI R,WANG L B,ZHANG C,et al.A2-FPN for semantic segmentation of fine-resolution remotely sensed images[J].International Journal of Remote Sensing,2022,43(3):1131-1155. [28]LI R,ZHENG S,DUAN C,et al.Land cover classification from remote sensing images based on multi-scale fully convolutional network[J].Geo-spatial Information Science,2022,25(2):278-294. [29]ZHANG Y,YAO T,QIU Z F,et al.Lightweight and Progressively-Scalable Networks for Semantic Segmentation[J].International Journal of Computer Vision,2023,131:2153-2171. |
|