计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 54-64.doi: 10.11896/jsjkx.240300189

• 社交媒体虚假信息检测 • 上一篇    下一篇

用于谣言检测的图卷积时空注意力融合与图重构方法

陈鑫, 荣欢, 郭尚斌, 杨彬   

  1. 南京信息工程大学人工智能(未来技术)学院 南京 210044
  • 收稿日期:2024-03-29 修回日期:2024-07-24 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 荣欢(1227558210@qq.com)
  • 作者简介:(2409749761@qq.com)
  • 基金资助:
    国家自然科学基金(62102187);江苏省自然科学基金(省基础研究计划)(BK20210639)

Graph Convolution Spatio-Temporal Attention Fusion and Graph Reconstruction Method forRumor Detection

CHEN Xin, RONG Huan, GUO Shangbin, YANG Bin   

  1. School of Artificial Intelligence(School of Future Technology),Nanjing University of Information Science and Technology,Nanjing 210044,China
  • Received:2024-03-29 Revised:2024-07-24 Online:2024-11-15 Published:2024-11-06
  • About author:CHEN Xin,born in 2003,undergra-duate.His main research interests include data mining and machine lear-ning.
    RONG Huan,born in 1990,Ph.D,associate professor.His main research intere-sts include knowledge graph and know-ledge engineering,social network multimedia mining,and complex machine learning theory.
  • Supported by:
    National Natural Science Foundation of China(62102187) and Natural Science Foundation of Jiangsu Province,China(Basic Research Program)(BK20210639).

摘要: 互联网的快速发展给人们带来了便利的社交,同时也为谣言的产生和传播创造了条件。谣言的传播速度之快、影响之恶劣引起了广泛的关注。为了及时识别出谣言以采取截断措施,谣言检测变得尤为重要。然而,在复杂的社交网络中,谣言传播状态动态变化、传播过程中干扰信息的存在,以及传播的不确定性等均为谣言检测带来了困难。为了解决上述问题,提出了一种用于谣言检测的图卷积时空注意力融合与图重构方法(STAFRGCN)。该方法对所有待检测言论进行两次检测以降低误判概率,首先使用一种时间渐进卷积模块(TPC)在时间维度上整合待测言论传播状态信息;然后分别在时间和空间两个方面使用注意力提取其主要传播特征信息并融合,对融合结果进行第一次谣言检测;随后基于LSTM预测和图重构方法调整待测言论传播总图结构,将其与第一次检测结果结合进行第二次检测。实验结果表明,STAFRGCN在Twitter15,Twitter16和Weibo数据集上的检测准确率分别为92.2%,91.8%和96.5%,与SOTA模型(KAGN)相比,准确率在3个数据集上分别提升了3.0%,1.5%和1.4%。

关键词: 谣言检测, 图神经网络, 图卷积, 注意力机制

Abstract: The rapid development of the Internet has brought convenience to people’s social life,but it also creates conditions for the generation and spread of rumors.The fast propagation speed and bad impact of rumors have attracted wide social attention.However,in complex social networks,the dynamic change of rumor propagation state,the existence of interference information in the propagation process,and the uncertainty of propagation all bring difficulties to rumor detection.In order to solve the above problems,this study proposes a graph convolution spatio-temporal attention fusion and graph reconstruction method(STAFRGCN) for rumor detection,and all the speeches to be detected are detected twice to reduce the probability of misjudgment.Firstly,a temporal progressive convolution module(TPC) is used to integrate the propagation status information of the speeches to be detected in the time dimension.Then,attention is used to extract and fuse the main propagation feature information in two aspects of time and space respectively,and the fusion result is used for the first rumor detection.After that,the total graph structure of the detected speech propagation is adjusted based on long short-term memory(LSTM)prediction and graph reconstruction method.It is combined with the first detection results for the second detection.Experiments show that the detection accuracy of STAFRGCN on Twitter15,Twitter16 and Weibo datasets is 92.2%,91.8% and 96.5%,respectively.Compared with SOTA model(KAGN),the accuracy is increased by 3.0%,1.5% and 1.4% on the 3 datasets, respectively.

Key words: Rumor detection, Graph neural network, Graph convolution, Attention mechanism

中图分类号: 

  • TP389.1
[1] CHEN Y F,LI Z Y,LIANG X,et al.Review on Rumor Detection of Online Social Networks[J].Chinese Journal of Compu-ters,2018,41(7):30.
[2] ZHANG S Q,DU S D,ZHANG X B,et al.Social Rumor Detection Method Based on Multimodal Fusion[J].Computer Science,2021,48(5):117-123.
[3] LV Y,SUN X,WEN Y,et al.Rumor detection based on time graph attention network[C]//2022 4th International Conference on Advances in Computer Technology,Information Science and Communications(CTISC).IEEE,2022:1-5.
[4] WU K,YANG S,ZHU K Q.False rumors detection on sinaweibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:651-662.
[5] LIU N,ZHANG F L,YIN J Q,et al.Rumor Detection Model on Social Media Based on Contrastive Learning with Edge-inference Augmentation[J].Computer Science,2023,50(11):49-54.
[6] HAN X M,JIA C Y,LI X Y,et al.Dual-attention NetworkModel on Propagation Tree Structures for Rumor Detection[J].Computer Science,2023,50(4):22-31.
[7] XU J M,SUN P,WU S F.Microblog Rumor Detection Method Based on Propagation Path Tree Kernel Learning[J].Computer Science,2022,49(6):342-349.
[8] LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907.11692,2019.
[9] PATEL D,D'SOUZA N,GAWANDE R.Automatic Twitter Rumour Detection using Machine Learning[C]//2022 IEEE Bombay Section Signature Conference(IBSSC).IEEE,2022:1-5.
[10] MA J,GAO W,WEI Z,et al.Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754.
[11] YANG F,LIU Y,YU X,et al.Automatic detection of rumor on sina weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics.2012:1-7.
[12] KWON S,CHA M,JUNG K,et al.Prominent features of rumor propagation in online social media[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108.
[13] ZHAO Z,RESNICK P,MEI Q.Enquiring minds:Early detec-tion of rumors in social media from enquiry posts[C]//Procee-dings of the 24th International Conference on World Wide Web.2015:1395-1405.
[14] CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684.
[15] HOSSEINI D,JIN R.Graph Neural Network based Approachfor Rumor Detection on Social Networks[C]//2023 Interna-tional Conference on Smart Applications,Communications and Networking(SmartNets).IEEE,2023:1-6.
[16] LIAO X,HUANG Z,YANG D,et al.Rumor detection in social media based on a hierarchical attention network[J].SCIENTIA SINICA Informationis,2018,48(11):1558-1574.
[17] YANG Y J,WANG L,WANG Y H.Rumor Detection Based on Source Information and Gating Graph Neural Network[J].Journal of Computer Research and Development,2021,58(7):1412-1424.
[18] XIE X T,HU Y Y,LIU X Z,et al.Rumor Detection Based on Representative User Characteristics Learning Through Propagation[J].Journal of Frontiers of Computer Science and Technology,2022,16(6):1334-1342.
[19] CHANG Q,LI X,DUAN Z.A Novel Approach for Rumor Detection in Social Platforms:Memory-Augmented Transformer with Graph Convolutional Networks[J].Knowledge-Based Systems,2024,292:111625.
[20] MA J,LIU Y,HAN M,et al.Propagation structure fusion for rumor detection based on node-level contrastive learning[J].IEEE Transactions on Neural Networks and Learning Systems,2023:1-12.
[21] HUANG Q,ZHOU C,WU J,et al.Deep structure learning for rumor detection on twitter[C]//2019 International Joint Conference on Neural Networks(IJCNN).IEEE,2019:1-8.
[22] KUMAR S,CARLEY K M.Tree lstms with convolution units to predict stance and rumor veracity in social media conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:5047-5058.
[23] HAQUE A,ABULAISH M.An Emotion-Enriched and Psycholinguistics Features-Based Approach for Rumor Detection on Online Social Media[C]//Proceedings of the 11th International Workshop on Natural Language Processing for Social Media.2023:28-37.
[24] CHOUDHRY A,KHATRI I,JAIN M,et al.An emotion-aware multitask approach to fake news and rumor detection using transfer learning[J].arXiv:2211.12374,2022.
[25] ULONG PEI G F,DU X,PECHENIZKIY M.Dynamic network representation learning via gaussian embedding[C]//NeurIPS 2019 Workshop on Graph Representation Learning.2019.
[26] MA J,GAO W,WONG K F.Detect rumors in microblog posts using propagation structure via kernel learning[C]//Procee-dings of the 55th Annual Meeting of the Association for Computa-tional Linguistics(Volume 1:Long Papers).Association for Computational Linguistics,2017:708-717.
[27] MA J,GAO W,MITRA P,et al.Detecting rumors from micro-blogs with recurrent neural networks[C]//Proceedings of the 25thInternational Joint Conference on Artificial Intelligence.2016.
[28] MA J,GAO W,WEI Z,et al.Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754.
[29] YAN Y,WANG Y,ZHENG P.A graph-based pivotal semantic mining framework for rumor detection[J].Engineering Applications of Artificial Intelligence,2023,118:105613.
[30] ZHOU Z,QI Y,LIU Z,et al.A C-GRU neural network for rumors detection[C]//2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems(CCIS).IEEE,2018:704-708.
[31] MA Y,XU S,DONG F.A multilevel graph convolution neural network model for rumor detection[C]//2022 IEEE 2nd International Conference on Power,Electronics and Computer Applications(ICPECA).IEEE,2022:1225-1229.
[32] LI J,LI R,NI S,et al.EPRD:Exploiting prior knowledge forevidence-providing automatic rumor detection[J].Neurocompu-ting,2024,563:126935.
[33] RAN H,JIA C,ZHANG P,et al.MGAT-ESM:Multi-channelgraph attention neural network with event-sharing module for rumor detection[J].Information Sciences,2022,592:402-416.
[34] CUI W,SHANG M.KAGN:knowledge-powered attention and graph convolutional networks for social media rumor detection[J].Journal of big Data,2023,10(1):45.
[35] TAN M,LE Q V.Mixconv:Mixed depthwise convolutional kernels[J].arXiv:1907.09595,2019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!