计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240400018-7.doi: 10.11896/jsjkx.240400018
林煌, 李弼程
LIN Huang, LI Bicheng
摘要: 方面级情感分析是一项细粒度的情感分析任务,旨在对给定文本中的特定方面进行情感极性分析。当前基于语法分析的方法严重依赖于依存树的单一解析结果,并且大部分研究对于语义和语法特征的融合并不充分。因此,提出了一种基于BERT模型和图注意力网络的方面级情感分析方法。该方法能够充分挖掘句子结构中的语义和语法信息,并通过交互注意力机制融合这些信息,从而获得更精确的情感特征。首先,利用BERT预训练模型得到文本的初始化向量,并使用注意力机制对方面词进行全局的语义信息关联,得到文本的语义特征。其次,利用语法解析器构建短语结构图和依存图,并利用图注意力网络对节点信息进行编码,得到文本的语法特征。最后,通过交互注意力机制结合学习到的语义和语法特征,实现了多个视角的融合,从而全面理解方面-观点关系。实验结果表明,所提方法在多个数据集上的ACC值和F1值均优于现有的多个先进方法。
中图分类号:
[1]WANG Y,HUANG M,ZHU X,et al.Attentionbased LSTM for aspect-level sentiment classification[C]//Conference on Empirical Methods in Natural Language Processing.2016:606-615. [2]TANG D,QIN B,FENG X,et al.Effective lstms for target-dependent sentiment classification[C]//International Conference on Computational Linguistics.2016:3298-3307. [3]ZENG X Q,HUA X,LIU P S,et al.Emotion Wheel and Lexicon based emotion distribution Label Enhancement Method[J].Chinese Journal of Computers,2021,44:1080-1094. [4]WU H,ZHANG Z,SHI S,et al.Phrase dependency relational graph attention network for Aspect-based Sentiment Analysis[J].Knowledge-Based Systems,2022,236:247. [5]WU H,ZHANG Z,WU Q.Exploring syntactic and semanticfeatures for authorship attribution[J].Applied Soft Computing,2021,111:127. [6]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Conference on Empirical Methods in Natural Language Processing.2020:3540-3549. [7]WANG K,SHEN W,YANG Y,et al.Relational graph attention network for aspect-based sentiment analysis[C]//Association for Computational Linguistics.2020:3229-3238. [8]ZHAO G Y,LV C G,FU G H,et al.Domain Specific Sentiment Words Based Attention Model for Cross-Domain Attribute-Oriented Sentiment Analysis[J].Journal of Chinese Information Processing,2021,35(6):93-102. [9]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTM for aspect-level sentiment classification[C]//Conference on Empirical Methods in Natural Language Processing.2016:606-615. [10]CHEN P,SUN Z,BING L,et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Conference on Empirical Methods in Natural Language Processing.2017:452-461. [11]MA D,LI S,ZHANG X,et al.Interactive attention networks foraspect-level sentiment classification[C]//Conference on International Joint Conference on Artificial Intelligence.2017:4068-4074. [12]LU Q,ZHU Z,ZHANG D,et al.Interactive rule attention network for aspect-level sentiment analysis[J].IEEE Access,2020,8:52505-52516. [13]XU H,LIU B,SHU L,et al.BERT post-training for review reading comprehension and aspect-based sentiment analysis[C]//Annual Conference of the North American Chapter of the Association for Computational Linguistics.2019:2324-2335. [14]SONG Y,WANG J,JIANG T,et al.Attentional encoder network for targeted sentiment classification[C]//International Conference on Artificial Neural Networks.2019:93-103. [15]ZHANG K,ZHANG K,ZHANG M,et al.Incorporating dynamicsemantics into pre-trained language model for aspect-based sentiment analysis[C]//Annual Meeting of the Association for Computational Linguistics.2022:3599-3610. [16]YAN H,DAI J,QIU X,et al.A unified generative framework for aspect-based sentiment analysis[C]//International Joint Conference on Natural Language Processing.2021:2416-2429. [17]ZHANG C,LI Q,SONG D.Aspect-based sentiment classifica-tion with aspect-specific graph convolutional networks[C]//Conference on Empirical Methods in Natural Language Proces-sing.2019:4568-4578. [18]LI R,CHEN H,FENG F,et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//International Joint Conference on Natural Language Processing.2021:6319-6329. [19]LIANG B,SU H,GUI L,et al.Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J].Knowledge-Based Systems,2022,235:1-11. [20]CHENC,TENG Z,WANG Z,et al.Discrete opinion tree induction for aspect-based sentiment analysis[C]//Annual Meeting of the Association for Computational Linguistics.2022:2051-2064. [21]ZHAO X,PENG H,DAI Q,et al.Rdgcn:Reinforced dependency graph convolutional network for aspect-based sentiment analysis[C]//International Conference on Web Search and Data Mi-ning.2024:976-984. [22]ZHAO X,ZHOU Y,XU X,et al.Extensible Multi-GranularityFusion Network for Aspect-based Sentiment Analysis[J].ar-Xiv:2402.07787,2024. [23]TU K W,LI J.A Survey of Recent Developments in Syntactic Parsing[J].Journal of Chinese Information Processing,2020,34(7):30-41. [24]CHAI W.A Review of the Constituency Parsing[J].Computer Knowledge and Technology,2020,16(16):3-10. [25]MRINI K,DERNONCOURT F,BUI T,et al.Rethinking self-attention:An interpretable self-attentive encoder-decoder parser[C]//Conference on Empirical Methods in Natural Language Processing.2020:731-742. [26]HERCIG T,BRYCHCÍN T,SVOBODA L,et al.Uwb at semeval-2016 task 5:Aspect based sentiment analysis[C]//International Workshop on Semantic Evaluation.2016:342-349. [27]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Annual Meeting of the Association for Computational Linguistics(volume 2:Short papers).2014:49-54. [28]JIANG Q,CHEN L,XU R,et al.A challenge dataset and effective models for aspect-based sentiment analysis[C]//Conference on Empirical Methods in Natural Language Processing.2019:6280-6285. [29]FAN F,FENG Y,ZHAO D.Multi-grained attention network for aspect-level sentiment classification[C]//Conference on Empirical Methods in Natural Language Processing.2018:3433-3442. [30]CHEN P,SUN Z,BING L,et al.Recurrent attention network on memory for aspect sentiment analysis[C]//Conference on Empirical Methods in Natural Language Processing.2017:452-461. [31]SUN K,ZHANG R,MENSAH S,et al.Aspect-level sentiment analysis via convolution over dependency tree[C]//Conference on Empirical Methods in Natural Language Processing.2019:5679-5688. [32]MA M,NA S,WANG H.AEGCN:An autoencoder-constrained graph convolutional network[J].Neurocomputing,2021,432:21-31. [33]ZENG J,LIU T,JIA W,et al.Relation construction for aspect-level sentiment classification[J].Information Sciences,2022,586:209-223. |
|