计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 330-335.doi: 10.11896/jsjkx.240400043
王晓艺1, 王炯2, 刘杰1,3, 周建设1
WANG Xiaoyi1, WANG Jiong2, LIU Jie1,3, ZHOU Jianshe1
摘要: 篇章结构分析是作文自动评分中的重要技术之一,也是自然语言处理领域中的重要研究内容。近年来,作文篇章结构分析的研究很少且主要集中于议论文,对记叙文的研究还较少,尤其是在记叙文篇章结构方面,研究方法和研究资源都相对有限。针对这些问题,文中构建了面向中小学记叙文篇章成分识别的数据集,使用基于BERT-BiLSTM的语料自动标注模型提高标注效率,并对内容分布以及语料标注的一致性进行了统计分析。提出了基于提示学习的记叙文篇章成分识别方法,通过自动构建识别篇章成分的前缀提示模板,利用层次注意力机制学习更为丰富的文本特征,从而提高记叙文篇章结构识别能力。在自建数据集下进行实验,结果表明,所提出的方法识别记叙文篇章结构的准确率提高到85.80%,优于对比的预训练语言模型。
中图分类号:
[1]BURSTEIN J,MARCU D,KNIGHT K.Finding the WRITEStuff:Automatic Identification of Discourse Structure in Student Essays[J].IEEE Intelligent Systems,2003,18(1):32-39. [2]STAB C,GUREVYCH I.Parsing Argumentation Structures in Persuasive Essays[J].Computational Linguistics,2017,43(3):619-659. [3]WANG Q.A review of narrative writing for high school en-trance examination based on“scoring criteria” [J].Bulletin Chinese Language Teaching,2016,(32):71-72. [4]XU F,ZHU Q M,ZHOU G D.Survey of Discourse Analysis Methods[J].Journal of Chinese Information Processing,2013,27(3):20-33. [5]HU W C,YANG Y L,WU C X.Survey of Implicit Discourse Relation Recognition Based on Deep Learning[J].Computer Science,2020,47(4):157-163. [6]KENTON J D M W C,TOUTANOVA L K.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT.2019:4171-4186. [7]RADFORD A,WU J,CHILD R,et al.Language models are un-supervised multitask learners[J].OpenAI blog,2019,1(8):9. [8]SCHICK T,SCHÜTZE H.Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics.2021:255-269. [9]PRENDINGER H.A novel discourse parser based on supportvector machine classification[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.2009:665-673. [10]SONG W,FU R,LIU L,et al.Discourse element identification in student essays based on global and local cohesion[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:2255-2261. [11]KONG F,ZHOU G.A CDT-styled end-to-end Chinese discourse parser[J].ACM Transactions on Asian and Low-Resource Language Information Processing,2017,16(4):1-17. [12]XU S,LI P,ZHOU G,et al.Employing text matching network to recognise nuclearity in chinese discourse[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:525-535. [13]ZHOU M,JIA Y M,ZHOU C L,et al.An automatic grading method for English compositions based on discourse structure [J].Computer Science,2019,46(3):234-241. [14]WANG X Y,WANG J C,LIU J.Evaluation of Chinese Narrative Text Structure Based on Fusion of Text Component Recognition [J].Small Micro Computer System,2025,46(1):55-63. [15]CHEN Y,ZHANG S,QI G,et al.Parameterizing context:Unleashing the power of parameter-efficient fine-tuning and incontext tuning for continual table semantic parsing[C]//NeurIPS 2023.2023. [16]WU J,YU T,WANG R,et al.Infoprompt:Information-theore-tic soft prompt tuning for natural language understanding[J].arXiv:2306.04933,2023. [17]CHO Y J,LIU L,XU Z,et al.Heterogeneous lora for federated fine-tuning of on-device foundation models[C]//International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023.2023. [18]LIALIN V,DESHPANDE V,RUMSHISKY A.Scaling down to scale up:A guide to parameter-efficient fine-tuning[J].arXiv:2303.15647,2023. [19]JOULIN A,GRAVE É,BOJANOWSKI P,et al.Bag of Tricks for Efficient Text Classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.2017:427-431. [20]CHEN Y.Convolutional neural network for sentence classification[D].Waterloo:University of Waterloo,2015. [21]LI X L,LIANG P.Prefix-Tuning:Optimizing Continuous Pro-mptsfor Generation[C]//Proceedings of the 59th Annual Mee-ting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:4582-4597. [22]CHEN N,LI X H.An Event Extraction Method Based on Template Prompt Learning[J].Data Analysis and Knowledge Discovery,2023,7(6):86-98. |
|