计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 79-85.doi: 10.11896/jsjkx.240400087
赵博程1, 包兰天1, 杨哲森2, 曹璇1, 苗启广1,3,4
ZHAO Bocheng1, BAO Lantian1, YANG Zhesen2, CAO Xuan1, MIAO Qiguang1,3,4
摘要: 随着互联网技术的迅猛发展,慕课等在线教育平台日益受到广泛关注。慕课作为一种创新的教育形式,有效突破了传统教育模式的地域界限,实现了优质教育资源的全球共享。通过慕课,学习者能够根据个人兴趣自主选择课程,灵活安排学习时间与进度,且能便利地进行重复学习。然而,当前慕课平台在针对授课视频中的特定知识点进行时间定位时,仍存在很大挑战,导致用户在学习关键核心知识点时需频繁拖动视频进度以寻找相应视频片段。针对这一现状,提出了一种基于多重二分匹配的注意力机制模型的慕课视频知识抽取算法。算法框架的主体部分包括字幕文本识别与生成、字幕文本分段提取、知识点抽取模型,以及知识点检索模块。实验结果表明,相对于当前的知识点抽取模型,所提模型在Inspec,NUS,Krapivin,SemEval,KP20k等多个数据集上,在部分关键指标上达到了当前的最优表现,充分证明了本系统在实际应用中的潜力和价值。
中图分类号:
[1]JIN H,NIE Y.“MOOC Going Abroad” Achieves a New Breakthrough in the Digitization of Higher Education [N].Guangming Daily,[2023-11-26](014). [2]GLAZKOVA A,MOROZOV D.Multi-task fine-tuning for ge-nerating keyphrases in a scientific domain[C]//2023 IX International Conference on Information Technology and Nanotechno-logy(ITNT).Samara,Russian Federation,2023:1-5. [3]SONG M,JIANG H,SHI S,et al.Is ChatGPT A Good Keyphrase Generator? A Preliminary Study[J].arXiv:2303.13001,2023. [4]Micron-BERT:BERT-based Facial Micro-Expression Recogni-tion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:1482-1492. [5]YE J,GUI T,LUO Y,et al.One2Set:Generating Diverse Keyphrases as a Set[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:4598-4608. [6]XIE B,SONG J,SHAO L,et al.From statistical methods to deep learning,automatic keyphrase prediction:A survey[J].Information Processing & Management,2023,60(4):103382. [7]HULTH A,MEGYESI B.A study on automatically extractedkeywords in text categorization[C]//Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics.2006:537-544. [8]KIM Y,KIM M,CATTLE A,et al.Applying graph-based keyword extraction to document retrieval[C]//Proceedings of the Sixth International Joint Conference on Natural Language Processing.2013:864-868. [9]RAMAKANTH P,MOHIT B.Multi-Reward Reinforced Sum-marization with Saliency and Entailment[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 2(Short Papers).2018:646-653. [10]BEREND G.Opinion expression mining by exploiting keyphrase extraction[C]//Proceedings of 5th International Joint Confe-rence on Natural Language Processing.2011:1162-1170. [11]SALTON G,BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information processing & management,1988,24(5):513-523. [12]CAMPOS R,MANGARAVITE V,PASQUALI A,et al.Yake! collection-independent automatic keyword extractor[C]//Advances in Information Retrieval:40th European Conference on IR Research,ECIR 2018,Grenoble,France,March 26-29,2018,Proceedings 40.Springer International Publishing,2018:806-810. [13]GOLLAPALLI S D,LI X L,YANG P.Incorporating expertknowledge into keyphrase extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [14]WANG J,PENG H,HU J S.Automatic keyphrases extraction from document using neural network[C]//Advances in Machine Learning and Cybernetics:4th International Conference.Revised Selected Papers.Springer Berlin Heidelberg,2006:633-641. [15]SUN S,LIU Z,XIONG C,et al.Capturing global informative-ness in open domain keyphrase extraction[C]//Natural Language Processing and Chinese Computing:10th CCF International Conference.Springer International Publishing,2021:275-287. [16]MENG R,ZHAO S Q,HAN S G,et al.Deep Keyphrase Gene-ration[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:582-592. [17]YUAN X D,WANG T,MENG R,et al.One Size Does Not Fit All:Generating and Evaluating Variable Number of Keyphrases[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7961-7975. [18]CHAN H P,CHEN W,WANG L,et al.Neural Keyphrase Ge-neration via Reinforcement Learning with Adaptive Rewards[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2163-2174. [19]LUO Y C,XU Y G,YE J C,et al.Keyphrase Generation with Fine-Grained Evaluation-Guided Reinforcement Learning[C]//Findings of the Association for Computational Linguistics.2021:497-507. [20]JISHNU R C,SEO Y P,TUHIN K,et al.KPDROP:Improving Absent Keyphrase Generation[C]//Findings of the Association for Computational Linguistics.2022:4853-4870. [21]ZHAO G,YIN G,YANG P,et al.Keyphrase Generation viaSoft and Hard Semantic Corrections[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:7757-7768. [22]CHEN B,IWAIHARA M.Enhancing Keyphrase Generation by BART Finetuning with Splitting and Shuffling[C]//Pacific Rim International Conference on Artificial Intelligence.Singapore:Springer Nature Singapore,2023:305-310. [23]GARG K,CHOWDHURY J R,CARAGEA C.Data Augmentation for Low-Resource Keyphrase Generation[J].arXiv:2305.17968,2023. |
|