计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 75-82.doi: 10.11896/jsjkx.240400104

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于逻辑视角的不完备形式背景上知识相容表示与推理

张少霞1, 李德玉2,3, 翟岩慧2,3   

  1. 1 山西财经大学信息学院 太原 030006
    2 山西大学计算机与信息技术学院 太原 030006
    3 计算智能与中文信息处理教育部重点实验室(山西大学) 太原 030006
  • 收稿日期:2024-04-15 修回日期:2024-06-23 出版日期:2024-08-15 发布日期:2024-08-13
  • 通讯作者: 李德玉(lidysxu@163.com)
  • 作者简介:(zhangshaoxia_sxu@163.com)
  • 基金资助:
    国家自然科学基金(62072294);山西省基础研究计划(202103021223303);山西省重点实验室开放课题(CICIP2022006)

Knowledge Compatibility Representation and Reasoning in Incomplete Formal Contexts from Logical Perspective

ZHANG Shaoxia1, LI Deyu2,3, ZHAI Yanhui2,3   

  1. 1 School of Information,Shanxi University of Finance and Economics,Taiyuan 030006,China
    2 School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China
    3 Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),Ministry of Education,Taiyuan 030006,China
  • Received:2024-04-15 Revised:2024-06-23 Online:2024-08-15 Published:2024-08-13
  • About author:ZHANG Shaoxia,born in 1991,Ph.D,lecturer,is a member of CCF(No.63867G). Her main research interests include concept lattice and granular computing.
    LI Deyu,born in 1965,Ph.D,professor,Ph.D supervisor,is a senior member of CCF (No.06905S). His main research interests include concept lattice and multi-label learning.
  • Supported by:
    National Natural Science Foundation of China(62072294),Fundamental Research Program of Shanxi Province(202103021223303) and Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province(CICIP2022006).

摘要: 形式背景中的信息不完备引起了知识的不相容性,即蕴涵在不完备形式背景的任一完备化形式背景不能同时成立。逻辑描述是从语义上进行知识表示、语构上制定语义协调推理规则的方法论。首先,从逻辑角度研究不完备数据上的知识相容语义表示,通过定义不完备实例刻画知识的合理性和相容性,并构造最紧致的相容集(相容规范基)。其次,语构上制定具有语义合理性、相容性和完备性的推理规则,从而避免知识推理过程中产生不相容知识和无效知识。最后,将逻辑研究结果运用在不完备形式背景上,引入两类蕴涵形式:↓↓-型蕴涵和↑↑-型蕴涵。这两类蕴涵兼具相容性且相对于可接受性蕴涵尺度更加严格,构造这两类蕴涵的相容规范基并验证其完备性和无冗余性。

关键词: 不完备形式背景, 知识相容性, 知识表示, 相容规范基, 知识推理

Abstract: The incomplete information in formal contexts leads to the incompatibility of knowledge,that is,implications cannot hold simultaneously in any completion of an incomplete formal context.Logical description is a methodology for representing knowledge from a semantic aspect and establishing inference rules with semantic coordination from a syntactic aspect.This paper firstly studies the compatibility semantic representation within incomplete data from a logical perspective,characterizes the soundness and compatibility of knowledge via incomplete instances,and constructs the most compact compatible set(namely compatible canonical basis).Secondly,this paper establishes inference rules with semantic soundness,compatibility,and completeness to avoid incompatible knowledge and invalid knowledge in knowledge reasoning.Finally,this paper applies the logical research results to incomplete formal contexts by introducing two types of implication forms,namely ↓↓-type implication and ↑↑-type implication,which are both compatible and more stringent than acceptable implication.The compatible canonical bases of the two types of implications are constructed and their completeness and non-redundancy are verified.

Key words: Incomplete formal context, Knowledge compatibility, Knowledge representation, Compatible canonical basis, Know-ledge reasoning

中图分类号: 

  • TP182
[1]WILLE R.Restructuring lattice theory:An approach based on hierarchies of concepts[C]//International Proceedings of International Conference on Formal Concept Analysis.Berlin,Germany:Springer,1982:445-470.
[2]MIN F,LUO S,LI J H.Network rule extraction under the network formal context based on three-way decision[J].Applied Intelligence,2023,53(5):5126-5145.
[3]BOGDANOVIĆ M,GLIGORIJEVIĆ M F,VELJKOVIĆ N,et al.Cross-portal metadata alignment-connecting open data portals through means of formal concept analysis[J].Information Sciences,2023,637:118958.
[4]MI Y L,LIU W Q,SHI Y.Semi-supervised concept learning by concept cognitive learning and concept space[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(5):2429-2442.
[5]YAN M Y,LI J H,LIU W Q,et al.Conceptual Knowledge Discovery and Evolution in Formal Context with Object Structure Information[J].Chinese Journal of Electronics,2023,51(1):11-17.
[6]CARPINETO C,ROMANO G.Exploiting the potential of con-cept lattices for information retrieval with credo[J].Journal of Universal Computer Sciences,2004,10(8):985-1013.
[7]BURMEISTER P,HOLZER R.On the treatment of incomplete knowledge in formal concept analysis[C]//Proceedings of International Conference on Conceptual Structures.Berlin:Springer,2000:385-398.
[8]OBIEDKOV S.Modal logic for evaluating formulas in incom-plete contexts[C]//Proceedings of International Conference on Conceptual Structures.Berlin:Springer,2002:314-325.
[9]HANIKA T,ZUMBRäGEL J.Towards collaborative conceptual exploration[C]//Proceedings of International Conference on Conceptual Structures.Berlin:Springer,2018:120-134.
[10]FELDE M,STUMME G.Interactive collaborative explorationusing incomplete contexts[J].Data & Knowledge Engineering,2023,143:102104.
[11]YAO Y Y.Interval sets and interval-set algebras[C]//Procee-dings of IEEE International Conference on Cognitive Informa-tics.New York:IEEE,2009:307-314.
[12]LI H X,WANG M H,ZHOUX Z,et al.An interval set model for learning rules from incomplete information table[J].International Journal of Approximate Reasoning,2012,53(1):24-37.
[13]LI J H,MEI C L,LV Y J.Incomplete decision contexts:appro-ximate concept construction,rule acquisition and knowledge reduction[J].International Journal of Approximate Reasoning,2013,54(1):149-165.
[14]YAO Y Y.Interval sets and three-way concept analysis in incomplete context[J].International Journal of Machine Learning and Cybernetics,2017,8(1):3-20.
[15]WANG J J,QIAN T.Attribute reduction of SE-ISI concept lat-tices for incomplete contexts[J].Soft computing,2020,24(20):15143-15158.
[16]LONG B H,XU W H,ZHANG X Y.Double threshold con-struction method for attribute-induced three-way concept lattice in incomplete fuzzy formal context[J].The Journal of Enginee-ring-JOE,2020,2020(13):549-554.
[17]SADOUM,DJOUADI1 Y,HADJ-ALI A.Modal interpretation of formal concept analysis for incomplete representations[C]//Proceedings of International Conference on Scalable Uncertainty Management.Berlin:Springer,2020:261-269.
[18]YANG D Q,YANG X R,JIA H,et al.Construction of fuzzy linguistic approximate concept lattice in an incomplete fuzzy linguistic formal context[J].International Journal of Compu-tational Intelligence Systems,2022,15(1):1-9.
[19]SRIREKHA B,SATHISH S,DEVIRN,et al.Attributes reduction on SE-ISI concept lattice for an incomplete context using object ranking[J].Mathematics,2023,11(7):1585.
[20]REN R S,WEI L,LI J H.Three-way approximate concept reduction in incomplete formal contexts[J].Pure Mathematics and Applied Mathematics,2024,40(1):77-89.
[21]ZHANG S X,LI D Y,ZHAI Y H.Incremental Method of Ge-nerating Decision Implication Canonical Basis[J].Soft Computing,2021,26(3):1067-1083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!