计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 295-306.doi: 10.11896/jsjkx.240400170
刘文飞1,2, 刘佳飞1,2,3, 王琦1,2, 吴璟莉1,2,3, 李高仕1,2,3
LIU Wenfei1,2, LIU Jiafei1,2,3, WANG Qi1,2, WU Jingli1,2,3, LI Gaoshi1,2,3
摘要: 随着数据中心、超级计算、云计算等技术领域的迅猛发展,互连网络作为这些技术的基础之一,其规模在不断扩大。然而,随着网络规模的增加,网络中服务器发生故障的情形不可避免。一旦互连网络因故障而瘫痪,将影响人类正常的工作和生活。因此,如何降低故障单元对整个网络拓扑产生的负面影响是一个非常有意义的问题。通常,剩余网络中最大的连通分支称为功能子系统,它量化了故障网络中处理器之间的通信能力和效率。这种量化可靠性的研究有助于更好地理解和管理互连网络的稳定性。文中从基于星图的互连网络出发,首先确定了当故障点集|F|≤5n-15时,Sn-F中的小分支H满足|V(H)|≤4;当|F|≤6n-19时,Sn-F中的小分支H满足|V(H)|≤5;其次重点讨论了星型网络Sn(n≥6)中移除数量不超过6n-19的子集时,网络中剩余分支的情形;最后提出了一种求解故障网络中小分支最小邻居数的近似算法,通过仿真实验证明了星型网络具有良好的鲁棒性和容错能力。这些结果对于理解和设计高可靠性的互连网络具有重要意义。
中图分类号:
[1]CHENG E,LIPMAN M J.Increasing the Connectivity of the Star Graphs[J].Networks,2010,40(3):165-169. [2]ZHOU S,DONG Q F.Reliability Analysis of MultiprocessorSystems[M].Beijing:Science Press,2020. [3]YANG X,EVANS D J,CHEN B,et al.On the Maximal Con-nected Component of Hypercube with Faulty Vertices[J].International Journal of Computer Mathematics,2004,81(5):515-525. [4]YANG X,EVANS D J,MEGSON G M.On the Maximal Connected Component of a Hypercube with Faulty Vertices III[J].International Journal of Computer Mathematics,2006,83(1):27-37. [5]YANG X,EVANS D J,MEGSON G M.On the Maximal Connected Component of Hypercube with Faulty Vertices(II)[J].International Journal of Computer Mathematics,2007,81(10):1175-1185. [6]YANG X,MEGSON G M,TANG Y Y,et al.Largest Connected Component of a Star Graph with Faulty Vertices[J].International Journal of Computer Mathematics,2008,85(12):1771-1778. [7]LIN L,HUANG Y,HSIEH S Y,et al.Strong Reliability of Star Graphs Interconnection Networks[J].IEEE Transactions on Reliability,2022,71(3):1241-1254. [8]ZHU Q,GUO G,WANG D.Relating Diagnosability,Strong Diagnosability and Conditional Diagnosability of Strong Networks[J].IEEE Transactions on Computers,2014,63(7):1847-1851. [9]LIU J,ZHOU S,ZHANG H,et al.Vulnerability Analysis of Multiprocessor System Based on Burnt Pancake Networks[J].Discrete Applied Mathematics,2022,314:304-320. [10]WANG Y,MENG J,FAN J.Reliabilities for Two Kinds ofGraphs with Smaller Diameters[J].Applied Mathematics and Computation,2023,446:127874. [11]ZHOU Q,LIU H,CHENG B,et al.Fault Tolerance of Recursive Match Networks Based ong-good-neighbor Fault Pattern[J].Applied Mathematics and Computation,2024,461:128318. [12]ZHANG H,HAO R X,QIN X W,et al.The High Faulty Tolerant Capability of the Alternating Group Graphs[J].IEEE Transactions on Parallel and Distributed Systems,2023,34(1):225-233. [13]FAN W,XIAO F,FAN J,et al.Fault-Tolerant Routing WithLoad Balancing in LeTQ Networks[J].IEEE Transactions on Dependable and Secure Computing,2023,20(1):68-82. [14]LI X,CHENG B,FAN J,et al.Parallel Construction of Edge-Independent Spanning Trees in Augmented Cubes[J].Computer Science,2024,51(9):346-356. [15]LIU X,ZHOU S,LIU J,et al.Reliability Analysis of the Cactus-Based Networks Based on Subsystem[J].The Computer Journal,2024,67(1):142-152. [16]YANG Y,ZHANG M,MENG J.Link Fault Tolerance of BCNetworks and Folded Hypercubes on h-extrar-component Edge Connectivity[J].Applied Mathematics and Computation,2024,462:128343. [17]SABIR E,FAN J,MENG J,et al.Structure Fault-TolerantHamiltonian Cycle and Path Embeddings in Bipartite k-Ary n-Cube Networks[J].IEEE Transactions on Reliability,2024,73(1):257-269. [18]LIU X,MENG J,SABIR E.Component Connectivity of the Data Center Network DCell[J].Applied Mathematics and Computation,2023,444:127822. [19]HUANG Y,LIN L,XU L,et al.Probabilistic Reliability via Subsystem Structures of Arrangement Graph Networks[J].IEEE Transactions on Reliability,2024,73(1):279-289. [20]ZHANG N,ZHU Q.Two Important Parameters of HPMCModel[J].Theoretical Computer Science,2022,905:10-17. [21]ZHANG H,ZHOU S.Characterization of Matroidal Connectivity of Regular Networks[J].Journal of Parallel and Distributed Computing,2024,186:104818. [22]XU J.Combinatorial Theory in Networks[M].Beijing:Science Press,2013. [23]XU J.Graph Theory and Its Applications[M].Hefei:University of Science and Technology of China Press,2010. [24]AKERS S B,KRISHNAMURTHY B.A Group-theoretic Model for Symmetric Interconnection Networks[J].IEEE Transactions on Computers,1989,38(4):555-566. [25]CHENG E,LIPMAN M J,LIPTÁK L.Strong Structural Properties of Unidirectional Star Graphs[J].Discrete Applied Mathematics,2008,156(15):2939-2949. |
|