计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400192-9.doi: 10.11896/jsjkx.240400192

• 图像处理&多媒体技术 • 上一篇    下一篇

一种基于目标检测的轨道交通上下客区客流指引方法

乐凌志1,2, 翟江涛2, 俞铭1, 孙同庆2   

  1. 1 南京国电南自轨道交通工程有限公司 南京 210000
    2 南京信息工程大学电子与信息工程学院 南京 210044
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 乐凌志(lingzhi-le@sac-china.com)
  • 基金资助:
    国家自然科学基金(U21B2003);江苏省产业前瞻与关键核心技术项目(BE2022075)

Object Detection-based Method for Guiding Passenger Flow in Boarding and Deparking Areas ofRail Transit

LE Lingzhi1,2, ZHAI Jiangtao2, YU Ming1, SUN Tongqing2   

  1. 1 Nanjing Guodian Nanzi Rail Transit Engineering Co.,Ltd.,Nanjing 210000,China
    2 School of Electronics and Information Engineering,University of Information Science & Technology,Nanjing 210044,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:LE Lingzhi,born in 1976,senior engineer.His main research interests include smart urban rail transit and intelligent substation.
  • Supported by:
    National Natural Science Foundation of China(U21B2003) and Industry Outlook and Key Core Technology Projects in Jiangsu Province(BE2022075).

摘要: 针对等待期屏蔽门前乘客占用下客区的情况,提出了一种基于目标检测的上下客区客流指引方法。首先针对屏蔽门前场景中乘客的形状特征对目标检测网络进行改进,提出MCA-YOLOv5s网络模型。然后通过智能门楣系统的安装高度和真实场景中上下客区的范围计算出摄像头的视场角大小和安装角度,确保拍摄的图像能够准确划分出上下客区。最后分别对上下客区中的乘客进行密度估计并设计对应密度值的客流分配策略,通过智能门楣终端上的扬声器进行指引。通过在真实场景中进行测试,验证了所提方法能够快速准确地估计乘客密度。

关键词: 目标检测, 乘客密度, 客流分配

Abstract: To address the situation where passengers occupy the alighting area while waiting in front of the platform screen doors,this paper proposes a passenger flow guidance method based on object detection.Firstly,an improved MCA-YOLOv5s network model is proposed by enhancing the shape features of passengers in front of the platform screen doors for object detection.Then the field of view angle and installation angle of the camera are calculated based on the mounting height of the intelligent door lintel system and the range of the alighting area in real scenes to ensure accurate division of the alighting and boarding areas in captured images.Subsequently,passenger density estimation is conducted for the alighting and boarding areas,and correspon-ding passenger flow distribution strategies are designed based on the estimated density values,with guidance provided through speakers on the intelligent door lintel terminal.Through testing in real scenarios,the effectiveness of this method in rapidly and accurately estimating passenger density is validated.

Key words: Object detection, Passenger density, Passenger flow distribution

中图分类号: 

  • TP391
[1]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1140-1448.
[2]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.
[3]HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969.
[4]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37.
[5]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7263-7271.
[6]SU P,HAN H,LIU M,et al.MOD-YOLO:Rethinking the YOLO architecture at the level of feature information and applying it to crack detection[J].Expert Systems with Applications,2024,237:121346.
[7]GOEL L,PATEL P.Improving YOLOv6 using advanced PSOoptimizer for weight selection in lung cancer detection and classification[J].Multimedia Tools and Applications,2024,83(32):78059-78092.
[8]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7464-7475.
[9]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768.
[10]HOWARD A,SANDLER M,CHU G,et al.Searching formobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1314-1324.
[11]CHEN J,KAO S,HE H,et al.Run,Don’t Walk:Chasing Higher FLOPS for Faster Neural Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:12021-12031.
[12]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722.
[13]HE J,ERFANI S,MA X,et al.α-IoU:A family of power intersection over union losses for bounding box regression[J].Advances in Neural Information Processing Systems,2021,34:20230-20242.
[14]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[15]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[16]HU J,SHEN L,SUNG.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[17]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542.
[18]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[19]REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:658-666.
[20]ZHENG Z,WANG P,REN D,et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].IEEE Transactions on Cybernetics,2021,52(8):8574-8586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!