计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 177-184.doi: 10.11896/jsjkx.240600007

• 计算机图形学&多媒体 • 上一篇    下一篇

基于边缘约束和改进Swin Unetr的复杂器官分割方法

彭琳娜, 张红云, 苗夺谦   

  1. 同济大学电子与信息工程学院 上海 201804
  • 收稿日期:2024-05-31 修回日期:2024-08-26 出版日期:2025-04-15 发布日期:2025-04-14
  • 通讯作者: 张红云(zhanghongyun@tongji.edu.cn)
  • 作者简介:(lnpeng@tongji.edu.cn)
  • 基金资助:
    国家自然科学基金(62076182,62376198);国家重点研发计划(2022YFB3104700);上海市自然科学基金(22ZR1466700)

Complex Organ Segmentation Based on Edge Constraints and Enhanced Swin Unetr

PENG Linna, ZHANG Hongyun, MIAO Duoqian   

  1. College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China
  • Received:2024-05-31 Revised:2024-08-26 Online:2025-04-15 Published:2025-04-14
  • About author:PENG Linna,born in 2001,master candidate.Her main research interests include image segmentation and machine learning.
    ZHANG Hongyun,born in 1972,Ph.D,associate professor.Her main research interests include principal curve algorithm,granular computing and fuzzy sets.
  • Supported by:
    National Natural Science Foundation of China(62076182,62376198),National Key Research and Development Program of China(2022YFB3104700) and Natural Science Foundation of Shanghai(22ZR1466700).

摘要: 针对腹部CT多器官分割任务中器官边缘模糊、器官比例差异过大的问题,提出了基于边缘约束和改进Swin Unetr的复杂器官分割方法。为了在不同体素比例的器官上提取精细程度不同的特征,设计了掩码注意力模块,通过计算各个器官的掩码信息,提取对应特征。随后,以数据集先验和掩码信息为基础,在相应的窗口和块大小上进行特征提取,以获得小比例器官分割所需的精细化特征,并与编码器的输出特征融合;同时,输出初步预测的语义分割结果后,为了充分利用边界信息,增强模型对于边界信息的处理能力,输出的语义特征通过卷积层进一步提取出边界信息,通过边缘损失最小化使模型的语义分割结果受到边缘预测任务的约束。在BTCV和TCIA pancreas-CT数据集上对所提方法进行训练和测试,在基于卷积网络的UNet++和基于Transformer的Swin Unetr上加入了提出的改进模块并进行训练,与Unetr等经典网络进行了对比实验。在BTCV数据集上,所提模型Dice系数分别达到了0.847 9和0.840 6,HD距离分别为11.76和8.35,整体上优于其他对比方法,从而验证了所提方法的有效性和可行性。

关键词: 图像分割, 注意力机制, 计算机断层扫描分割, 深度学习, 多器官分割, 多任务学习, 计算机辅助诊断

Abstract: To address the challenges of organ edge blurring and significant differences in organ proportions in abdominal CT multi-organ segmentation tasks,this paper proposes a complex organ segmentation approach based on edge constraints and enhanced Swin Unetr.To extract features of varying degrees of granularity from organs with different voxel proportions,this study introduces the Masked Attention Block.By computing the mask information of each organ,the corresponding features are extracted.Subsequently,based on dataset priors and mask information,refined feature extraction is conducted within appropriate window and block sizes to obtain the fine-grained features necessary for segmenting organs with smaller voxel proportions.Upon generating preliminary semantic segmentation predictions,to fully leverage boundary information and enhance the model’s ability to handle such information,the semantic features are further extracted through convolutional layers to capture boundary details.The model’s semantic segmentation results are constrained by the edge prediction task through edge loss minimization.The proposed method is trained and tested on the BTCV and TCIA pancreas-CT datasets.The enhancement modules are incorporated into the UNet++based on convolutional networks and the Swin Unetr based on Transformers for training.Comparative experiments are conducted with classic networks such as Unetr.On the BTCV dataset,the Dice coefficients reach 0.847 9 and 0.840 6,with corresponding Hausdorff distances of 11.76 and 8.35,respectively.Overall,the proposed method outperforms other compa-rative methods,confirming its effectiveness and feasibility.

Key words: Image segmentation, Attention mechanism, Computed tomography segmentation, Deep learning, Multi-organ segmentation, Multi-task learning, Computer-aided diagnosis

中图分类号: 

  • TP391
[1]VAN G B,SCHAEFER-PROKOP C M,PROKOP M.Compu-ter-aided diagnosis:how to move from the laboratory to the clinic[J].Radiology,2011,261(3):719-732.
[2]TONG T,WOLZ R,WANG Z H,et al.Discriminative dictionarylearning for abdominal multi-organ segmentation[J].Medical Image Analysis,2015,23(1):92-104.
[3]OLIVEIRAB,QUEIRÓS S,MORAIS P,et al.A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography[J].Medical Image Analysis,2018,45:108-120.
[4]CERROLAZAJ J,VILLANUEVA A,CABEZA R.Hierarchical multi-resolution decomposition of statistical shape models[J].Signal,Image and Video Processing,2015,9:1473-1490.
[5]OKADA T,LINGURARU M G,HORI M,et al.Abdominalmulti-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors[J].Medical Image Analysis,2015,26(1):1-18.
[6]SINGH P,BOSE S S.A quantum-clustering optimization method for COVID-19 CT scan image segmentation[J].Expert Systems with Applications,2021,185:115637.
[7]BOZKURT F,KÖSE C,SARI A.An inverse approach for automatic segmentation of carotid and vertebral arteries in CTA[J].Expert Systems with Applications,2018,93:358-375.
[8]GIBSON E,GIGANTI F,HU Y P,et al.Automatic multi-organ segmentation on abdominal CT with dense V-networks[J].IEEE Transactions on Medical Imaging,2018,37(8):1822-1834.
[9]RONNEBERGERO,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention.Me-dical Image Computing and Computer Assisted Intervention So-ciety,2015:234-241.
[10]HEINRICHM P,OKTAY O,BOUTELDJA N.OBELISK-Net:Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions[J].Medical Image Analysis,2019,54:1-9.
[11]ZHANG L,ZHANG J,SHEN P,et al.Block level skip connections across cascaded V-Net for multi-organ segmentation[J].IEEE Transactions on Medical Imaging,2020,39(9):2782-2793.
[12]FANG X,YAN P K.Multi-organ segmentation over partially la-beled datasets with multi-scale feature abstraction[J].IEEE Transactions on Medical Imaging,2020,39(11):3619-3629.
[13]ISENSEE F,JAEGER P F,KOHL S A A,et al.nnU-Net:a self-configuring method for deep learning-based biomedical image segmentation[J].Nature Methods,2021,18(2):203-211.
[14]ZHANG J P,XIE Y T,WANG Y,et al.Inter-slice context residual learning for 3D medical image segmentation[J].IEEE Transactions on Medical Imaging,2020,40(2):661-672.
[15]SINHA A,DOLZ J.Multi-scale self-guided attention for medical image segmentation[J].IEEE Journal of Biomedical and Health Informatics,2020,25(1):121-130.
[16]ZHOU Z W,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:Redesigning skip connections to exploit multiscale features in image segmentation[J].IEEE Transactions on Medical Imaging,2019,39(6):1856-1867.
[17]JIN Q G,MENG Z P,SUN C M,et al.RA-UNet:A hybrid deep attention-aware network to extract liver and tumor in CT scans[J].Frontiers in Bioengineering and Biotechnology,2020,8:605132.
[18]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NIPS’17).2017:6000-6010.
[19]HATAMIZADEHA,TANG Y C,NATH V,et al.Unetr:Transformers for 3d medical image segmentation[C] //Procee-dings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:574-584.
[20]HATAMIZADEH A,NATH V,TANG Y C,et al.Swin unetr:Swin transformers for semantic segmentation of brain tumors in mri images[C]//International MICCAI Brainlesion Workshop.2021:272-284.
[21]LEE S,LEE M.MetaSwin:a unified meta vision transformermodel for medical image segmentation[J].PeerJ Computer Science,2024,10:e1762.
[22]WANG L C,HUANG J H,XING X D,et al.Hybrid Swin Deformable Attention U-Net for Medical Image Segmentation[C]//2023 19th International Symp on Medical Information Processing and Analysis.2023:1-5.
[23]HEIDARI M,KAZEROUNI A,SOLTANY M,et al.Hiformer:Hierarchical multi-scale representations using transformers for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6202-6212.
[24]LIU Z,LIN Y T,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[25]IRSHAD S,GOMES D P S,KIM S T.Improved abdominalmulti-organ segmentation via 3D boundary-constrained deep neural networks[J].IEEE Access,2023,11:35097-35110.
[26]GIBSON E,GIGANTI F,HU Y P,et al.Automatic multi-organ segmentation on abdominal CT with dense V-networks[J].IEEE Transactions on Medical Imaging,2018,37(8):1822-1834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!